• Title/Summary/Keyword: similarity-based estimation

Search Result 145, Processing Time 0.03 seconds

Analysis of Genetic Variability Using RAPD Markers in Paeonia spp. Grown in Korea

  • Lim, Mi Young;Jana, Sonali;Sivanesan, Iyyakkannu;Park, Hyun Rho;Hwang, Ji Hyun;Park, Young Hoon;Jeong, Byoung Ryong
    • Horticultural Science & Technology
    • /
    • v.31 no.3
    • /
    • pp.322-327
    • /
    • 2013
  • The genetic diversity and phylogenetic relationships of eleven herbaceous peonies grown in Korea were analyzed by random amplified polymorphic DNA (RAPD). Twenty-four decamer RAPD primers were used in a comparative analysis of these Korean peony species. Of the 142 total RAPD fragments amplified, 124 (87.3%) were found to be polymorphic. The remaining 18 fragments were found to be monomorphic (12.7%) shared by individuals of all 11 peony species. Cluster analysis based on the presence or absence of bands was performed by Jaccard's similarity coefficient, based on Unweighted Pair Group Method with Arithmetic Averages. Genetic similarity range was 0.39 to 0.90 with a mean of 0.64. This study offered a rapid and reliable method for the estimation of variability among different peony species which could be utilized by the breeders for further improvement of the local peony species. Also, the results propose that the RAPD marker technique is a useful tool for evaluation of genetic diversity and relationship amongst different peony species.

Acoustic Signal based Optimal Route Selection Problem: Performance Comparison of Multi-Attribute Decision Making methods

  • Borkar, Prashant;Sarode, M.V.;Malik, L. G.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.647-669
    • /
    • 2016
  • Multiple attribute for decision making including user preference will increase the complexity of route selection process. Various approaches have been proposed to solve the optimal route selection problem. In this paper, multi attribute decision making (MADM) algorithms such as Simple Additive Weighting (SAW), Weighted Product Method (WPM), Analytic Hierarchy Process (AHP) method and Total Order Preference by Similarity to the Ideal Solution (TOPSIS) methods have been proposed for acoustic signature based optimal route selection to facilitate user with better quality of service. The traffic density state conditions (very low, low, below medium, medium, above medium, high and very high) on the road segment is the occurrence and mixture weightings of traffic noise signals (Tyre, Engine, Air Turbulence, Exhaust, and Honks etc) is considered as one of the attribute in decision making process. The short-term spectral envelope features of the cumulative acoustic signals are extracted using Mel-Frequency Cepstral Coefficients (MFCC) and Adaptive Neuro-Fuzzy Classifier (ANFC) is used to model seven traffic density states. Simple point method and AHP has been used for calculation of weights of decision parameters. Numerical results show that WPM, AHP and TOPSIS provide similar performance.

Age Estimation via Selecting Discriminated Features and Preserving Geometry

  • Tian, Qing;Sun, Heyang;Ma, Chuang;Cao, Meng;Chu, Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1721-1737
    • /
    • 2020
  • Human apparent age estimation has become a popular research topic and attracted great attention in recent years due to its wide applications, such as personal security and law enforcement. To achieve the goal of age estimation, a large number of methods have been pro-posed, where the models derived through the cumulative attribute coding achieve promised performance by preserving the neighbor-similarity of ages. However, these methods afore-mentioned ignore the geometric structure of extracted facial features. Indeed, the geometric structure of data greatly affects the accuracy of prediction. To this end, we propose an age estimation algorithm through joint feature selection and manifold learning paradigms, so-called Feature-selected and Geometry-preserved Least Square Regression (FGLSR). Based on this, our proposed method, compared with the others, not only preserves the geometry structures within facial representations, but also selects the discriminative features. Moreover, a deep learning extension based FGLSR is proposed later, namely Feature selected and Geometry preserved Neural Network (FGNN). Finally, related experiments are conducted on Morph2 and FG-Net datasets for FGLSR and on Morph2 datasets for FGNN. Experimental results testify our method achieve the best performances.

Rotation Angle Estimation Method using Radial Projection Profile (방사 투영 프로파일을 이용한 회전각 추정 방법)

  • Choi, Minseok
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.10
    • /
    • pp.20-26
    • /
    • 2021
  • In this paper, we studied the rotation angle estimation methods required for image alignment in an image recognition environment. In particular, a rotation angle estimation method applicable to a low specification embedded-based environment was proposed and compared with the existing method using complex moment. The proposed method estimates the rotation angle through similarity mathcing of the 1D projection profile along the radial axis after converting an image into polar coordinates. In addition, it is also possible to select a method of using vector sum of the projection profile, which more simplifies the calculation. Through experiments conducted on binary pattern images and gray-scale images, it was shown that the estimation error of the proposed method is not significantly different from that of complex moment-based method and requires less computation and system resources. For future expansion, a study on how to match the rotation center in gray-scale images will be needed.

Language Model Adaptation for Conversational Speech Recognition (대화체 연속음성 인식을 위한 언어모델 적응)

  • Park Young-Hee;Chung Minhwa
    • Proceedings of the KSPS conference
    • /
    • 2003.05a
    • /
    • pp.83-86
    • /
    • 2003
  • This paper presents our style-based language model adaptation for Korean conversational speech recognition. Korean conversational speech is observed various characteristics of content and style such as filled pauses, word omission, and contraction as compared with the written text corpora. For style-based language model adaptation, we report two approaches. Our approaches focus on improving the estimation of domain-dependent n-gram models by relevance weighting out-of-domain text data, where style is represented by n-gram based tf*idf similarity. In addition to relevance weighting, we use disfluencies as predictor to the neighboring words. The best result reduces 6.5% word error rate absolutely and shows that n-gram based relevance weighting reflects style difference greatly and disfluencies are good predictor.

  • PDF

Super-Pixels Generation based on Fuzzy Similarity (퍼지 유사성 기반 슈퍼-픽셀 생성)

  • Kim, Yong-Gil;Moon, Kyung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.147-157
    • /
    • 2017
  • In recent years, Super-pixels have become very popular for use in computer vision applications. Super-pixel algorithm transforms pixels into perceptually feasible regions to reduce stiff features of grid pixel. In particular, super-pixels are useful to depth estimation, skeleton works, body labeling, and feature localization, etc. But, it is not easy to generate a good super-pixel partition for doing these tasks. Especially, super-pixels do not satisfy more meaningful features in view of the gestalt aspects such as non-sum, continuation, closure, perceptual constancy. In this paper, we suggest an advanced algorithm which combines simple linear iterative clustering with fuzzy clustering concepts. Simple linear iterative clustering technique has high adherence to image boundaries, speed, memory efficient than conventional methods. But, it does not suggest good compact and regular property to the super-pixel shapes in context of gestalt aspects. Fuzzy similarity measures provide a reasonable graph in view of bounded size and few neighbors. Thus, more compact and regular pixels are obtained, and can extract locally relevant features. Simulation shows that fuzzy similarity based super-pixel building represents natural features as the manner in which humans decompose images.

Enhancement of the Box-Counting Algorithm for Fractal Dimension Estimation (프랙탈 차원 추정을 위한 박스 계수법의 개선)

  • So, Hye-Rim;So, Gun-Baek;Jin, Gang-Gyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.710-715
    • /
    • 2016
  • Due to its simplicity and high reliability, the box-counting(BC) method is one of the most frequently used techniques to estimate the fractal dimensions of a binary image with a self-similarity property. The fractal calculation requires data sampling that determines the size of boxes to be sampled from the given image and directly affects the accuracy of the fractal dimension estimation. There are three non-overlapping regular grid methods: geometric-step method, arithmetic-step method and divisor-step method. These methods have some drawbacks when the image size M becomes large. This paper presents a BC algorithm for enhancing the accuracy of the fractal dimension estimation based on a new sampling method. Instead of using the geometric-step method, the new sampling method, called the coverage ratio-step method, selects the number of steps according to the coverage ratio. A set of experiments using well-known fractal images showed that the proposed method outperforms the existing BC method and the triangular BC method.

Moving Object Tracking in UAV Video using Motion Estimation (움직임 예측을 이용한 무인항공기 영상에서의 이동 객체 추적)

  • Oh, Hoon-Geol;Lee, Hyung-Jin;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.4
    • /
    • pp.400-405
    • /
    • 2006
  • In this paper, we propose a moving object tracking algorithm by using motion estimation in UAV(Unmanned Aerial Vehicle) video. Proposed algorithm is based on generation of initial image from detected reference image, and tracking of moving object under the time-varying image. With a series of this procedure, tracking process is stable even when the UAV camera sways by correcting position of moving object, and tracking time is relatively reduced. A block matching algorithm is also utilized to determine the similarity between reference image and moving object. An experimental result shows that our proposed algorithm is better than the existing full search algorithm.

  • PDF

Analysis and Estimation for Market Share of Biologics based on Google Trends Big Data (구글 트렌드 빅데이터를 통한 바이오의약품의 시장 점유율 분석과 추정)

  • Bong, Ki Tae;Lee, Heesang
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.2
    • /
    • pp.14-24
    • /
    • 2020
  • Google Trends is a useful tool not only for setting search periods, but also for providing search volume to specific countries, regions, and cities. Extant research showed that the big data from Google Trends could be used for an on-line market analysis of opinion sensitive products instead of an on-site survey. This study investigated the market share of tumor necrosis factor-alpha (TNF-α) inhibitor, which is in a great demand pharmaceutical product, based on big data analysis provided by Google Trends. In this case study, the consumer interest data from Google Trends were compared to the actual product sales of Top 3 TNF-α inhibitors (Enbrel, Remicade, and Humira). A correlation analysis and relative gap were analyzed by statistical analysis between sales-based market share and interest-based market share. Besides, in the country-specific analysis, three major countries (USA, Germany, and France) were selected for market share analysis for Top 3 TNF-α inhibitors. As a result, significant correlation and similarity were identified by data analysis. In the case of Remicade's biosimilars, the consumer interest in two biosimilar products (Inflectra and Renflexis) increased after the FDA approval. The analytical data showed that Google Trends is a powerful tool for market share estimation for biosimilars. This study is the first investigation in market share analysis for pharmaceutical products using Google Trends big data, and it shows that global and regional market share analysis and estimation are applicable for the interest-sensitive products.

Active noise control algorithm based on noise frequency estimation (소음 주파수 추정 기법을 이용한 능동소음제어 알고리즘)

  • 김선민;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.321-324
    • /
    • 1997
  • In this paper, Active Noise Control(ANC) algorithm is proposed based on the estimated frequency estimator of the reference signal. The conventional feedforward ANC algorithms should measure the reference and use it to calculate the gradient of the squared error and filter coefficients. For ANC systems applied to aircrafts and passenger ships, engines from which reference signal is usually measured is so far from seats where main part of controller is placed that the scheme might be difficult to implement or very costly. Feedback ANC algorithm which doesn't need to measure the reference uses the error signal to update the filter and is sensitive to unexpected transient noise like a sneeze, clapping of hands and so on The proposed algorithm estimates frequencies of the desired signal in real time using adaptive notch filter. New frequency estimation algorithm is proposed with the improved convergence rate, threshold SNR and computational simplicity. Reference is not measured but created with the estimated frequencies. It has strong similarity to the conventional feedback control because reference is made from error signal. Enhanced error signal is used to update the controller for better performance under the measurement noise and impact noise. The proposed ANC algorithm is compared with the conventional feedback control.

  • PDF