• Title/Summary/Keyword: similarity matrix

Search Result 316, Processing Time 0.023 seconds

Personalized Document Summarization Using NMF and Clustering (군집과 비음수 행렬 분해를 이용한 개인화된 문서 요약)

  • Park, Sun
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.1
    • /
    • pp.151-155
    • /
    • 2009
  • We proposes a new method using the non-negative matrix factorization (NMF) and clustering method to extract the sentences for personalized document summarization. The proposed method uses clustering method for retrieving documents to extract sentences which are well reflected topics and sub-topics in document. Beside it can extract sentences with respect to query which are well reflected user interesting by using the inherent semantic features in document by NMF. The experimental results shows that the proposed method achieves better performance than other methods use the similarity and the NMF.

  • PDF

Response Time Prediction of IoT Service Based on Time Similarity

  • Yang, Huaizhou;Zhang, Li
    • Journal of Computing Science and Engineering
    • /
    • v.11 no.3
    • /
    • pp.100-108
    • /
    • 2017
  • In the field of Internet of Things (IoT), smarter embedded devices offer functions via web services. The Quality-of-Service (QoS) prediction is a key measure that guarantees successful IoT service applications. In this study, a collaborative filtering method is presented for predicting response time of IoT service due to time-awareness characteristics of IoT. First, a calculation method of service response time similarity between different users is proposed. Then, to improve prediction accuracy, initial similarity values are adjusted and similar neighbors are selected by a similarity threshold. Finally, via a densified user-item matrix, service response time is predicted by collaborative filtering for current active users. The presented method is validated by experiments on a real web service QoS dataset. Experimental results indicate that better prediction accuracy can be achieved with the presented method.

Multi-Level Fusion Processing Algorithm for Complex Radar Signals Based on Evidence Theory

  • Tian, Runlan;Zhao, Rupeng;Wang, Xiaofeng
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1243-1257
    • /
    • 2019
  • As current algorithms unable to perform effective fusion processing of unknown complex radar signals lacking database, and the result is unstable, this paper presents a multi-level fusion processing algorithm for complex radar signals based on evidence theory as a solution to this problem. Specifically, the real-time database is initially established, accompanied by similarity model based on parameter type, and then similarity matrix is calculated. D-S evidence theory is subsequently applied to exercise fusion processing on the similarity of parameters concerning each signal and the trust value concerning target framework of each signal in order. The signals are ultimately combined and perfected. The results of simulation experiment reveal that the proposed algorithm can exert favorable effect on the fusion of unknown complex radar signals, with higher efficiency and less time, maintaining stable processing even of considerable samples.

A Distributed Domain Document Object Management using Semantic Reference Relationship (SRR을 이용한 분산 도메인 문서 객체 관리)

  • Lee, Chong-Deuk
    • Journal of Digital Convergence
    • /
    • v.10 no.5
    • /
    • pp.267-273
    • /
    • 2012
  • The semantic relationship structures hierarchically the huge amount of document objects which is usually not formatted. However, it is very difficult to structure relevant data from various distributed application domains. This paper proposed a new object management method to service the distributed domain objects by using semantic reference relationship. The proposed mechanism utilized the profile structure in order to extract the semantic similarity from application domain objects and utilized the joint matrix to decide the semantic relationship of the extracted objects. This paper performed the simulation to show the performance of the proposed method, and simulation results show that the proposed method has better retrieval performance than the existing text mining method and information extraction method.

Similarity Analysis Between SAR Target Images Based on Siamese Network (Siamese 네트워크 기반 SAR 표적영상 간 유사도 분석)

  • Park, Ji-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.462-475
    • /
    • 2022
  • Different from the field of electro-optical(EO) image analysis, there has been less interest in similarity metrics between synthetic aperture radar(SAR) target images. A reliable and objective similarity analysis for SAR target images is expected to enable the verification of the SAR measurement process or provide the guidelines of target CAD modeling that can be used for simulating realistic SAR target images. For this purpose, this paper presents a similarity analysis method based on the siamese network that quantifies the subjective assessment through the distance learning of similar and dissimilar SAR target image pairs. The proposed method is applied to MSTAR SAR target images of slightly different depression angles and the resultant metrics are compared and analyzed with qualitative evaluation. Since the image similarity is somewhat related to recognition performance, the capacity of the proposed method for target recognition is further checked experimentally with the confusion matrix.

BOUNDEDNESS IN NONLINEAR PERTURBED DIFFERENTIAL SYSTEMS VIA t-SIMILARITY

  • Im, Dong Man;Goo, Yoon Hoe
    • Korean Journal of Mathematics
    • /
    • v.24 no.4
    • /
    • pp.723-736
    • /
    • 2016
  • This paper shows that the solutions to nonlinear perturbed differential system $$y^{\prime}= f(t,y)+{\int_{t_{0}}^{t}g(s,y(s))ds+h(t,y(t),Ty(t))$$ have bounded properties. To show the bounded properties, we impose conditions on the perturbed part ${\int_{t_{0}}^{t}g(s,y(s))ds,\;h(t, y(t),\;Ty(t))$, and on the fundamental matrix of the unperturbed system y' = f(t, y) using the notion of h-stability.

Derivation of information for R&D management with technology relation analysis (기술연관분석을 이용한 연구개발 의사결정 정보 도출 - 한국가스공사 연구개발사업 적용을 중심으로 -)

  • 오경준
    • Journal of Korea Technology Innovation Society
    • /
    • v.3 no.3
    • /
    • pp.67-84
    • /
    • 2000
  • This paper expanded the usefulness of technology relation analysis by applying to R&D activities of Korea Gas Corporation (Kogas) at the corporate level. Technology relation analysis has been applied to assessment of R&D investments in telecommunication and construction industries in Korea. As empirical findings, technology map and technology spillover matrix of Kogas have been derived by technology similarity analysis. It has bee found that various useful information for R&D assessment could be acquired from the technology relation analysis at the corporate level.

  • PDF

On the clustering of huge categorical data

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.6
    • /
    • pp.1353-1359
    • /
    • 2010
  • Basic objective in cluster analysis is to discover natural groupings of items. In general, clustering is conducted based on some similarity (or dissimilarity) matrix or the original input data. Various measures of similarities between objects are developed. In this paper, we consider a clustering of huge categorical real data set which shows the aspects of time-location-activity of Korean people. Some useful similarity measure for the data set, are developed and adopted for the categorical variables. Hierarchical and nonhierarchical clustering method are applied for the considered data set which is huge and consists of many categorical variables.

Identifying Spatial Distribution Pattern of Water Quality in Masan Bay Using Spatial Autocorrelation Index and Pearson's r (공간자기상관 지수와 Pearson 상관계수를 이용한 마산만 수질의 공간분포 패턴 규명)

  • Choi, Hyun-Woo;Park, Jae-Moon;Kim, Hyun-Wook;Kim, Young-Ok
    • Ocean and Polar Research
    • /
    • v.29 no.4
    • /
    • pp.391-400
    • /
    • 2007
  • To identify the spatial distribution pattern of water quality in Masan Bay, Pearson's correlation as a common statistic method and Moran's I as a spatial autocorrelation statistics were applied to the hydrological data seasonally collected from Masan Bay for two years ($2004{\sim}2005$). Spatial distribution of salinity, DO and silicate among the hydrological parameters clustered strongly while chlorophyll a distribution displayed a weak clustering. When the similarity matrix of Moran's I was compared with correlation matrix of Pearson's r, only the relationships of temperature vs. salinity, temperature vs. silicate and silicate vs. total inorganic nitrogen showed significant correlation and similarity of spatial clustered pattern. Considering Pearson's correlation and the spatial autocorrelation results, water quality distribution patterns of Masan Bay were conceptually simplified into four types. Based on the simplified types, Moran's I and Pearson's r were compared respectively with spatial distribution maps on salinity and silicate with a strong clustered pattern, and with chlorophyll a having no clustered pattern. According to these test results, spatial distribution of the water quality in Masan Bay could be summed up in four patterns. This summation should be developed as spatial index to be linked with pollutant and ecological indicators for coastal health assessment.

A practical application of cluster analysis using SPSS

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.1207-1212
    • /
    • 2009
  • Basic objective in cluster analysis is to discover natural groupings of items or variables. In general, clustering is conducted based on some similarity (or dissimilarity) matrix or the original input text data. Various measures of similarities (or dissimilarities) between objects (or variables) are developed. We introduce a real application problem of clustering procedure in SPSS when the distance matrix of the objects (or variables) is only given as an input data. It will be very helpful for the cluster analysis of huge data set which leads the size of the proximity matrix greater than 1000, particularly. Syntax command for matrix input data in SPSS for clustering is given with numerical examples.

  • PDF