• Title/Summary/Keyword: similarity calculation

Search Result 208, Processing Time 0.023 seconds

The Need for Paradigm Shift in Semantic Similarity and Semantic Relatedness : From Cognitive Semantics Perspective (의미간의 유사도 연구의 패러다임 변화의 필요성-인지 의미론적 관점에서의 고찰)

  • Choi, Youngseok;Park, Jinsoo
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.111-123
    • /
    • 2013
  • Semantic similarity/relatedness measure between two concepts plays an important role in research on system integration and database integration. Moreover, current research on keyword recommendation or tag clustering strongly depends on this kind of semantic measure. For this reason, many researchers in various fields including computer science and computational linguistics have tried to improve methods to calculating semantic similarity/relatedness measure. This study of similarity between concepts is meant to discover how a computational process can model the action of a human to determine the relationship between two concepts. Most research on calculating semantic similarity usually uses ready-made reference knowledge such as semantic network and dictionary to measure concept similarity. The topological method is used to calculated relatedness or similarity between concepts based on various forms of a semantic network including a hierarchical taxonomy. This approach assumes that the semantic network reflects the human knowledge well. The nodes in a network represent concepts, and way to measure the conceptual similarity between two nodes are also regarded as ways to determine the conceptual similarity of two words(i.e,. two nodes in a network). Topological method can be categorized as node-based or edge-based, which are also called the information content approach and the conceptual distance approach, respectively. The node-based approach is used to calculate similarity between concepts based on how much information the two concepts share in terms of a semantic network or taxonomy while edge-based approach estimates the distance between the nodes that correspond to the concepts being compared. Both of two approaches have assumed that the semantic network is static. That means topological approach has not considered the change of semantic relation between concepts in semantic network. However, as information communication technologies make advantage in sharing knowledge among people, semantic relation between concepts in semantic network may change. To explain the change in semantic relation, we adopt the cognitive semantics. The basic assumption of cognitive semantics is that humans judge the semantic relation based on their cognition and understanding of concepts. This cognition and understanding is called 'World Knowledge.' World knowledge can be categorized as personal knowledge and cultural knowledge. Personal knowledge means the knowledge from personal experience. Everyone can have different Personal Knowledge of same concept. Cultural Knowledge is the knowledge shared by people who are living in the same culture or using the same language. People in the same culture have common understanding of specific concepts. Cultural knowledge can be the starting point of discussion about the change of semantic relation. If the culture shared by people changes for some reasons, the human's cultural knowledge may also change. Today's society and culture are changing at a past face, and the change of cultural knowledge is not negligible issues in the research on semantic relationship between concepts. In this paper, we propose the future directions of research on semantic similarity. In other words, we discuss that how the research on semantic similarity can reflect the change of semantic relation caused by the change of cultural knowledge. We suggest three direction of future research on semantic similarity. First, the research should include the versioning and update methodology for semantic network. Second, semantic network which is dynamically generated can be used for the calculation of semantic similarity between concepts. If the researcher can develop the methodology to extract the semantic network from given knowledge base in real time, this approach can solve many problems related to the change of semantic relation. Third, the statistical approach based on corpus analysis can be an alternative for the method using semantic network. We believe that these proposed research direction can be the milestone of the research on semantic relation.

Drug-Drug Interaction Prediction Using Krill Herd Algorithm Based on Deep Learning Method

  • Al-Marghilani, Abdulsamad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.319-328
    • /
    • 2021
  • Parallel administration of numerous drugs increases Drug-Drug Interaction (DDI) because one drug might affect the activity of other drugs. DDI causes negative or positive impacts on therapeutic output. So there is a need to discover DDI to enhance the safety of consuming drugs. Though there are several DDI system exist to predict an interaction but nowadays it becomes impossible to maintain with a large number of biomedical texts which is getting increased rapidly. Mostly the existing DDI system address classification issues, and especially rely on handcrafted features, and some features which are based on particular domain tools. The objective of this paper to predict DDI in a way to avoid adverse effects caused by the consumed drugs, to predict similarities among the drug, Drug pair similarity calculation is performed. The best optimal weight is obtained with the support of KHA. LSTM function with weight obtained from KHA and makes bets prediction of DDI. Our methodology depends on (LSTM-KHA) for the detection of DDI. Similarities among the drugs are measured with the help of drug pair similarity calculation. KHA is used to find the best optimal weight which is used by LSTM to predict DDI. The experimental result was conducted on three kinds of dataset DS1 (CYP), DS2 (NCYP), and DS3 taken from the DrugBank database. To evaluate the performance of proposed work in terms of performance metrics like accuracy, recall, precision, F-measures, AUPR, AUC, and AUROC. Experimental results express that the proposed method outperforms other existing methods for predicting DDI. LSTMKHA produces reasonable performance metrics when compared to the existing DDI prediction model.

A User Authentication System Using Face Analysis and Similarity Comparison (얼굴 분석과 유사도 비교를 이용한 사용자 인증 시스템)

  • Ryu Dong-Yeop;Yim Young-Whan;Yoon Sunnhee;Seo Jeong Min;Lee Chang Hoon;Lee Keunsoo;Lee Sang Moon
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.11
    • /
    • pp.1439-1448
    • /
    • 2005
  • In this paper, after similarity of color information in above toro and geometry position analysis of important characteristic information in face and abstraction object that is inputted detects face area using comparison, describe about method to do user certification using ratio information and hair spring degree. Face abstraction algorithm that use color information has comparative advantages than face abstraction algorithm that use form information because have advantage that is not influenced facial degree or site etc. that tip. Because is based on color information, change of lighting or to keep correct performance because is sensitive about color such as background similar to complexion is difficult. Therefore, can be used more efficiently than method to use color information as that detect characteristic information of eye and lips etc. that is facial importance characteristic element except color information and similarity for each object achieves comparison. This paper proposes system that eye and mouth's similarity that calculate characteristic that is ratio red of each individual after divide face by each individual and is segmentalized giving weight in specification calculation recognize user confirming similarity through search. Could experiment method to propose and know that the awareness rate through analysis with the wave rises.

  • PDF

Query Expansion and Term Weighting Method for Document Filtering (문서필터링을 위한 질의어 확장과 가중치 부여 기법)

  • Shin, Seung-Eun;Kang, Yu-Hwan;Oh, Hyo-Jung;Jang, Myung-Gil;Park, Sang-Kyu;Lee, Jae-Sung;Seo, Young-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.743-750
    • /
    • 2003
  • In this paper, we propose a query expansion and weighting method for document filtering to increase precision of the result of Web search engines. Query expansion for document filtering uses ConceptNet, encyclopedia and documents of 10% high similarity. Term weighting method is used for calculation of query-documents similarity. In the first step, we expand an initial query into the first expanded query using ConceptNet and encyclopedia. And then we weight the first expanded query and calculate the first expanded query-documents similarity. Next, we create the second expanded query using documents of top 10% high similarity and calculate the second expanded query- documents similarity. We combine two similarities from the first and the second step. And then we re-rank the documents according to the combined similarities and filter off non-relevant documents with the lower similarity than the threshold. Our experiments showed that our document filtering method results in a notable improvement in the retrieval effectiveness when measured using both precision-recall and F-Measure.

Image Retrieval Using Entropy-Based Image Segmentation (엔트로피에 기반한 영상분할을 이용한 영상검색)

  • Jang, Dong-Sik;Yoo, Hun-Woo;Kang, Ho-Jueng
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.4
    • /
    • pp.333-337
    • /
    • 2002
  • A content-based image retrieval method using color, texture, and shape features is proposed in this paper. A region segmentation technique using PIM(Picture Information Measure) entropy is used for similarity indexing. For segmentation, a color image is first transformed to a gray image and it is divided into n$\times$n non-overlapping blocks. Entropy using PIM is obtained from each block. Adequate variance to perform good segmentation of images in the database is obtained heuristically. As variance increases up to some bound, objects within the image can be easily segmented from the background. Therefore, variance is a good indication for adequate image segmentation. For high variance image, the image is segmented into two regions-high and low entropy regions. In high entropy region, hue-saturation-intensity and canny edge histograms are used for image similarity calculation. For image having lower variance is well represented by global texture information. Experiments show that the proposed method displayed similar images at the average of 4th rank for top-10 retrieval case.

SRS: Social Correlation Group based Recommender System for Social IoT Environment

  • Kang, Deok-Hee;Choi, Hoan-Suk;Choi, Sang-Gyu;Rhee, Woo-Seop
    • International Journal of Contents
    • /
    • v.13 no.1
    • /
    • pp.53-61
    • /
    • 2017
  • Recently, the Social Internet of Things (IoT), the follow-up of the IoT, has been studied to expand the existing IoT services, by integrating devices into the social network of people. In the Social IoT environment, humans, devices and digital contents are connected with social relationships, to guarantee the network navigability and establish levels of trustworthiness. However, this environment handles massive data, including social data of humans (e.g., profile, interest and relationship), profiles of IoT devices, and digital contents. Hence, users and service providers in the Social IoT are exposed to arbitrary data when searching for specific information. A study about the recommender system for the Social IoT environment is therefore needed, to provide the required information only. In this paper, we propose the Social correlation group based Recommender System (SRS). The SRS generates a target group, depending on the social correlation of the service requirement. To generate the target group, we have designed an architecture, and proposed a procedure of the SRS based on features of social interest similarity and principles of the Collaborative Filtering and the Content-based Recommender System. With simulation results of the target scenario, we present the possibility of the SRS to be adapted to various Social IoT services.

Comparative Study of the Rhei Rhizoma by Pattern Analysis (패턴분석법에 의한 대황의 비교 연구)

  • Kang, Jong-Seong;Park, Ki-Ju;Wu, En-Qi;Lee, Eun-Sil;Hwang, Gwi-Seo;Lee, Hyun-Sun;Kim, Young-Ho
    • Korean Journal of Pharmacognosy
    • /
    • v.39 no.3
    • /
    • pp.179-185
    • /
    • 2008
  • Three species, such as Rheum palmatum L., R. tanguticum Maxim. and R. officinale Baillon are recognized as the source plants of Rhei Rhizoma in Korean Pharmacopeia. However, other herbal sources such as R. undulatum L. and Rumex crispus L. have been often misused as Rhei Rhizoma. A pattern analysis method to discriminate Rhei Rhizoma in Korean Pharmacopeia from other herbal plants using HPLC and TLC chromatograms was developed. The multivariate peak data of the chromatograms of methanol extracts of Rhei Rhizoma were used for hierarchical clustering analysis, principal components analysis and similarity calculation. Besides of the statistic analysis, TLC patterns of samples could be used as criteria of the discrimination. The developed pattern analysis method was specific and could be readily utilized for comprehensive evaluation of Rhei Rhizoma.

Acoustic Signal based Optimal Route Selection Problem: Performance Comparison of Multi-Attribute Decision Making methods

  • Borkar, Prashant;Sarode, M.V.;Malik, L. G.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.647-669
    • /
    • 2016
  • Multiple attribute for decision making including user preference will increase the complexity of route selection process. Various approaches have been proposed to solve the optimal route selection problem. In this paper, multi attribute decision making (MADM) algorithms such as Simple Additive Weighting (SAW), Weighted Product Method (WPM), Analytic Hierarchy Process (AHP) method and Total Order Preference by Similarity to the Ideal Solution (TOPSIS) methods have been proposed for acoustic signature based optimal route selection to facilitate user with better quality of service. The traffic density state conditions (very low, low, below medium, medium, above medium, high and very high) on the road segment is the occurrence and mixture weightings of traffic noise signals (Tyre, Engine, Air Turbulence, Exhaust, and Honks etc) is considered as one of the attribute in decision making process. The short-term spectral envelope features of the cumulative acoustic signals are extracted using Mel-Frequency Cepstral Coefficients (MFCC) and Adaptive Neuro-Fuzzy Classifier (ANFC) is used to model seven traffic density states. Simple point method and AHP has been used for calculation of weights of decision parameters. Numerical results show that WPM, AHP and TOPSIS provide similar performance.

3D Shape Descriptor with Interatomic Distance for Screening the Molecular Database (분자 데이터베이스 스크리닝을 위한 원자간 거리 기반의 3차원 형상 기술자)

  • Lee, Jae-Ho;Park, Joon-Young
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.6
    • /
    • pp.404-414
    • /
    • 2009
  • In the computational molecular analysis, 3D structural comparison for protein searching plays a very important role. As protein databases have been grown rapidly in size, exhaustive search methods cannot provide satisfactory performance. Because exhaustive search methods try to handle the structure of protein by using sphere set which is converted from atoms set, the similarity calculation about two sphere sets is very expensive. Instead, the filter-and-refine paradigm offers an efficient alternative to database search without compromising the accuracy of the answers. In recent, a very fast algorithm based on the inter-atomic distance has been suggested by Ballester and Richard. Since they adopted the moments of distribution with inter-atomic distance between atoms which are rotational invariant, they can eliminate the structure alignment and orientation fix process and perform the searching faster than previous methods. In this paper, we propose a new 3D shape descriptor. It has properties of the general shape distribution and useful property in screening the molecular database. We show some experimental results for the validity of our method.

A Recommendation Technique using Weight of User Information (사용자 정보 가중치를 이용한 추천 기법)

  • Yun, So-Young;Youn, Sung-Dae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.877-885
    • /
    • 2011
  • A collaborative filtering(CF) is the most widely used technique in recommender system. However, CF has sparsity and scalability problems. These problems reduce the accuracy of recommendation and extensive studies have been made to solve these problems, In this paper, we proposed a method that uses a weight so as to solve these problems. After creating a user-item matrix, the proposed method analyzes information about users who prefer the item only by using data with a rating over 4 for enhancing the accuracy in the recommendation. The proposed method uses information about the genre of the item as well as analyzed user information as a weight during the calculation of similarity, and it calculates prediction by using only data for which the similarity is over a threshold and uses the data as the rating value of unrated data. It is possible simultaneously to reduce sparsity and to improve accuracy by calculating prediction through an analysis of the characteristics of an item. Also, it is possible to conduct a quick classification based on the analyzed information once a new item and a user are registered. The experiment result indicated that the proposed method has been more enhanced the accuracy, compared to item based, genre based methods.