• Title/Summary/Keyword: similar materials

Search Result 4,776, Processing Time 0.031 seconds

"적"语法性连语和汉语对应表现形式的研究

  • 류홍샨
    • 중국학논총
    • /
    • no.70
    • /
    • pp.19-37
    • /
    • 2021
  • Foreign learners are not focusing on "적" grammar. Therefore, the lack of materials on "적" is the reason that foreign learners use "적" in real life. In particular, when teaching the Chinese-dependent noun "적", there are some problems in making the Chinese equivalent of "적". more accurately understood by Koreans. In addition, when using grammar through analyzing the grammatical conjunction centered on "적" and the corresponding expression of Chinese, the main reason for the error is that there is no common concept and form in the mother tongue, so there is no consciousness. Therefore, it is difficult for learners to learn similar expressions that are not in Chinese or Korean. Therefore, this study aims to improve specific educational programs for Korean learners and Korean Chinese learners in terms of the time system and the corresponding performance of Chinese grammar and Chinese characters based on the previous version of "적".

Effect of the Mg Content on the Solidification Cracking Susceptibility of the Al-Mg Alloy Laser Welds

  • Yoon, J.W.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.63-70
    • /
    • 2001
  • The solidification cracking susceptibilities of Al-Mg alloy laser welds were assessed using self-restraint tapered specimen crack test. The dependence of cracking susceptibility of Al-Mg alloy laser welds on Mg contents was observed to be similar to that of arc welds in the same materials. The cracking susceptibility of Al-Mg alloy laser welds increased as Mg content increased up to 1.6-1.9 wt.% and then it decreased as Mg content increased further. The peak cracking susceptibility occurred at around 1.6 to 1.9 wt.% Mg for both autogenous and wire feed welds. It was also observed that the cracking susceptibility decreased as the grain size of Al-Mg alloy laser welds decreased, when Mg content was in the range higher than 1.9 wt.%.

  • PDF

Plasma Assisted Debinding and Sintering (PADS) - A Metal Injection Molding Case Study

  • Machado, R.;Ristow Jr., W.;Alba, P.R.;Klein, A.N.;Fusao, D.;Wendhausen, P.A.P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.221-222
    • /
    • 2006
  • This paper describes a Plasma Assisted Debinding and Sintering (PADS) equipment, which has been designed to process Metal Injection Molded (MIM) components. The use of a hybrid system combining a glow discharge with a conventional heating system makes debinding and sintering of MIM components, in the same heating cycle, a feasible industrial process. Characteristics as density, carbon content and mechanical properties are similar to traditionally processed MIM materials. The reduction of energy and gas consumption and shorter lead-times are economic advantages of PADS system. The clean environment of PADS is also an ecological advantage.

  • PDF

A Study on Tensile Strength Dependent on Variation of Output Condition of the X-shape Infill Pattern using FFF-type 3D Printing (융합 필라멘트 제조 방식의 3D 프린팅을 이용한 X자 형상 내부 채움 패턴의 출력 옵션 변화에 따른 인장강도 연구)

  • D. H. Na;H. J. Kim;Y. H. Lee
    • Transactions of Materials Processing
    • /
    • v.33 no.2
    • /
    • pp.123-131
    • /
    • 2024
  • Plastic, the main material of FFF-type 3D printing, exhibits lower strength compared to metal. research aimed at increasing strength is needed for use in various industrial fields. This study analyzed three X-shape infill patterns(grid, lines, zigzag) with similar internal lattice structure. Moreover, tensile test considering weight and printing time was conducted based on the infill line multiplier and infill overlap percentage. The three X-shape infill patterns(grid, lines, zigzag) showed differences in nozzle paths, material usage and printing time. When infill line multiplier increased, there was a proportional increase in tensile strength/weight and tensile strength/printing time. In terms of infill overlap percentage, the grid pattern at 50% and the zigzag and lines patterns at 75% demonstrated the most efficient performance.

Advancements in Capacitive Touch System and Stylus Technologies

  • Ha-Min Lee;Seung-Hoon Ko
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.5
    • /
    • pp.465-475
    • /
    • 2024
  • Due to changes in the form factor of display panels and touch screen panels in various devices, capacitive touch systems have evolved to address various issues such as low power consumption, noise immunity, and small chip size. Furthermore, some devices have applications that use a stylus. Since the stylus operates similarly to a finger touch, it encounters similar issues. Recent research trends focus on addressing key issues such as noise, which is primarily caused by the self-capacitor formed between the display cathode and the touch screen panel. In this paper, Various research papers discussing methods to eliminate external noise will be reviewed. These advancements enhance noise immunity in touch systems, making it easier to use thinner and more flexible panels. These progress make touch technology more versatile and reliable in various applications.

Antibacterial Activity of Bacteria Isolated from Rocks on the Seashore (갯바위에서 분리한 미생물의 항균활성 분석)

  • Park, In-Suk;Oh, Ryunkyoung;Lee, Min Jeong;Moon, Ji Young;Kim, Young-Ok;Nam, Bo-Hye;Kong, Hee Jeong;Kim, Woo-Jin;An, Cheul Min;Kim, Dong-Gyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.6
    • /
    • pp.904-912
    • /
    • 2015
  • There is a great deal of research interest regarding substitutes for antibiotics because of various obstacles to the efficacy and use of antibiotics. We isolated and analyzed diversity of microbiota which exhibited antibacterial activity against 23 pathogenic bacteria, to develop alternative agent of antibiotics. By investigating the microbiota from rocks on the seashore, we characterized and obtained various antibacterial material-producing bacteria. Thirty-one isolates belong to four genera and seven species, according to 16S rDNA sequence analysis, showed antibacterial activities against 23 pathogenic bacteria. The Identity of 16S rDNA sequences indicated three species of Bacillus, one species of Paenibacillus, one species of Pseudomonas and two species of Enterobacter. Two isolates were similar to Bacillus aerophilus, four isolates were similar to Bacillus pumilus, seven isolates were similar to Bacillus safensis, 15 isolates were similar to Paenibacillus polymyxa, respectively. In addition, one isolate was similar with Pseudomonas poae, one isolate was similar to Enterobacter asburiae, and one isolate was similar to Enterobacter ludwigii, respectively. Variations of antibacterial activity and level among the same species were indicated the diverse strains of isolates. Vibrio vulnificus showed the highest degree of growth inhibition by 29 isolates. Further studies regarding antibacterial materials and bacteria suggest that development of probiotic strains or alternative agents to antibiotics.

Effect of Induction Heat Bending Process on the Properties of ASME SA106 Gr. C Carbon Steel Pipes

  • Kim, Ki Tae;Kim, Young Sik;Chang, Hyun Young;Oh, Young Jin;Sung, Gi Ho
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.47-53
    • /
    • 2015
  • Recently, the bending process is greatly applied to fabricate the pipe line. Bending process can reduce welding joints and then decrease the number of inspection. Thus, the maintenance cost will be reduced. Induction heat bending process is composed of bending deformation by repeated local heat and cooling. By this thermal process, corrosion properties and microstructure can be affected. This work focused on the effect of induction heating bending process on the properties of ASME SA106 Gr. C low carbon steel pipes. Microstructure analysis, hardness measurements, and immersion corrosion test were performed for base metal and bended area including extrados, intrados, crown up, and down parts. Microstructure was analyzed using an optical microscope and SEM. Hardness was measured using a Rockwell B scale. Induction heat bending process has influenced upon the size and distribution of ferrite and pearlite phases which were transformed into finer structure than those of base metal. Even though the fine microstructure, every bent area showed a little lower hardness than that of base metal. It is considered that softening by the bending process may be arisen. Except of I2, intrados area, the others showed a similar corrosion rate to that of base metal. But even relatively high rate of intrados area was very low and acceptable. Therefore, it is judged that induction heat bending process didn't affect boric acid corrosion behaviour of carbon steel.

Effect of Sintering Temperature on the Thermoelectric Properties of Bismuth Antimony Telluride Prepared by Spark Plasma Sintering (방전플라즈마 소결법으로 제조된 Bismuth Antimony Telluride의 소결온도에 따른 열전특성)

  • Lee, Kyoung-Seok;Seo, Sung-Ho;Jin, Sang-Hyun;Yoo, Bong-Young;Jeong, Young-Keun
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.280-284
    • /
    • 2012
  • Bismuth antimony telluride (BiSbTe) thermoelectric materials were successfully prepared by a spark plasma sintering process. Crystalline BiSbTe ingots were crushed into small pieces and then attrition milled into fine powders of about 300 nm ~ 2${\mu}m$ size under argon gas. Spark plasma sintering was applied on the BiSbTe powders at 240, 320, and $380^{\circ}C$, respectively, under a pressure of 40 MPa in vacuum. The heating rate was $50^{\circ}C$/min and the holding time at the sintering temperature was 10 min. At all sintering temperatures, high density bulk BiSbTe was successfully obtained. The XRD patterns verify that all samples were well matched with the $Bi_{0.5}Sb_{1.5}Te_{3}$. Seebeck coefficient (S), electric conductivity (${\sigma}$) and thermal conductivity (k) were evaluated in a temperature range of $25{\sim}300^{\circ}C$. The thermoelectric properties of BiSbTe were evaluated by the thermoelectric figure of merit, ZT (ZT = $S^2{\sigma}T$/k). The grain size and electric conductivity of sintered BiSbTe increased as the sintering temperature increased but the thermal conductivity was similar at all sintering temperatures. Grain growth reduced the carrier concentration, because grain growth reduced the grain boundaries, which serve as acceptors. Meanwhile, the carrier mobility was greatly increased and the electric conductivity was also improved. Consequentially, the grains grew with increasing sintering temperature and the figure of merit was improved.

Effect of Surfactant Addition on the Dielectric Properties of BaTiO3/epoxy Composites (분산제가 BaTiO3/에폭시 복합체의 유전특성에 미치는 영향)

  • Lee, Dong-Ho;Kim, Byung-Kook;Je, Hae-June
    • Korean Journal of Materials Research
    • /
    • v.19 no.11
    • /
    • pp.576-580
    • /
    • 2009
  • $BaTiO_3$/epoxy composites have been widely investigated as promising materials for embedded capacitors in printed circuit boards. It is generally known that the dielectric constant (K) of the $BaTiO_3$/epoxy composites increases with improvement of the dispersion of $BaTiO_3$ particles in the epoxy matrix that comes from adding surfactant. The influences of surfactant addition on the dielectric properties of the $BaTiO_3$/epoxy composites are reported in the present study. The dielectric constant of the $BaTiO_3$/epoxy composites is not significantly affected by the surfactant addition. However, the temperature coefficient of capacitance increases and the peel strength decreases as the amount of added surfactant increases. The influences of surfactant addition on the dielectric properties of the neat epoxy are also very similar to those of the $BaTiO_3$/epoxy composites. The residual surfactant in the $BaTiO_3$/epoxy composites affects the temperature coefficient of capacitance and the peel strength of the epoxy matrix, which in turn affects the temperature coefficient of capacitance and the peel strength of the $BaTiO_3$/epoxy composites.

Removal Efficiency of Water Contents using Inertial Impaction Separator with Change in Relative Humidity (입구 습도 변화에 따른 관성 충돌 방식의 액적 분리장치의 수분제거효율 변화)

  • Song, Dong Keun;Lee, Sin Young;Hong, Won Seok;Shin, Wanho;Kim, Gyujin;Kim, Hanseok
    • Particle and aerosol research
    • /
    • v.9 no.4
    • /
    • pp.247-252
    • /
    • 2013
  • Removal of water contents in a gas is needed in industrial field of gas processing related on energy production/conversion, and environmental treatment. Inertial separators are economic devices for separating droplets from the gas stream. For design and incorporation of inertial pre-treatment separator, characteristics of removal of water contents with various operation conditions are needed. In this study, removal efficiency of water droplets at various flowrates (5-14 SCMM) and relative humidity (R.H.) conditions (40%, and 90%) has been investigated. At low R.H. condition, the removal characteristic is similar to the removal of solid particles. But, droplet growth resulting from the condensation of water vapor at high R.H. condition, is significant and it made increase in removal efficiency of droplet phase of water contents. For rapid removal of water contents, an effective method to enhancing condensation growth of water droplets is highly needed.