• Title/Summary/Keyword: similar materials

Search Result 4,776, Processing Time 0.039 seconds

A Study on the Improvement of Tool's Life by Applying DLC Sacrificial Layer on Nitride Hard Coated Drill Tools (드릴공구의 이종질화막상 DLC 희생층 적용을 통한 공구 수명 개선 연구)

  • Kang, Yong-Jin;Kim, Do Hyun;Jang, Young-Jun;Kim, Jongkuk
    • Journal of Surface Science and Engineering
    • /
    • v.53 no.6
    • /
    • pp.271-279
    • /
    • 2020
  • Non-ferrous metals, widely used in the mechanical industry, are difficult to machine, particularly by drilling and tapping. Since non-ferrous metals have a strong tendency to adhere to the cutting tool, the tool life is greatly deteriorated. Diamond-like carbon (DLC) is one of the promising candidates to improve the performance and life of cutting tool due to their low frictional property. In this study, a sacrificial DLC layer is applied on the hard nitride coated drill tool to improve the durability. The DLC coatings are fabricated by controlling the acceleration voltage of the linear ion source in the range of 0.6~1.8 kV. As a result, the optimized hardness(20 GPa) and wear resistance(1.4 x 10-8 ㎣/N·m) were obtained at the 1.4 kV. Then, the optimized DLC coating is applied as an sacrificial layer on the hard nitride coating to evaluate the performance and life of cutting tool. The Vickers hardness of the composite coatings were similar to those of the nitride coatings (AlCrN, AlTiSiN), but the friction coefficients were significantly reduced to 0.13 compared to 0.63 of nitride coatings. The drilling test were performed on S55C plate using a drilling machine at rotation speed of 2,500 rpm and penetration rate of 0.25 m/rev. The result showed that the wear width of the composite coated drills were 200 % lower than those of the AlCrN, AlTiSiN coated drills. In addition, the cutting forces of the composite coated drills were 13 and 15 % lower than that of AlCrN, AlTiSiN coated drills, respectively, as it reduced the aluminum clogging. Finally, the application of the DLC sacrificial layer prevents initial chipping through its low friction property and improves drilling quality with efficient chip removal.

Emissions and Combustion Dynamics with Fuel Injection Position for Low-swirl Nozzles of Gas Turbine Combustor (복합발전 가스터빈 연소기용 저선회 노즐의 연료 분사 위치에 따른 배기배출 및 연소진동 특성)

  • Jeongjae, Hwang;Won June, Lee;Min Kuk, Kim;Han Seok, Kim
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.6
    • /
    • pp.37-44
    • /
    • 2022
  • In this study, two low-swirl nozzles with the same SN (Swirl Number) but different mass ratio (m) of the core part and the swirler part were designed to perform an atmospheric pressure combustion test. For each nozzle, a combustion test was conducted according to the adiabatic flame temperature, and the flame structure, emissions, and combustion instability mode were identified. Although the flame structure was significantly different, the CO emission was similar, and the NOx emission was also more related to combustion dynamics than the flame structure. Combustion dynamics and NOx emission were identified while adjusting the convection delay time by changing the position of the fuel injection nozzle. It was confirmed that when the convection delay time is in the region of (3+4n)/4T±1/4T (n=0,1,2,...), the combustion instability is strong, and in the opposite case, the combustion instability is very weak.

Low Velocity Impact Property of CF/Epoxy Laminate according to Interleaved Structure of Amorphous Halloysite Nanotubes (비정질 할로이사이트 나노입자의 교차적층 구조에 따른 탄소섬유/에폭시 라미네이트의 저속 충격 특성)

  • Ye-Rim Park;Sanjay Kumar;Yun-Hae Kim
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.270-274
    • /
    • 2023
  • The stacking configuration of fiber-reinforced polymer (FRP) composites, achieved via the filament winding process, exhibits distinct variations compared to conventional FRP composite stacking arrangements. Consequently, it becomes challenging to ascertain the influence of mechanical properties based on the typical stacking structures. Thus, it becomes imperative to enhance the mechanical behavior and optimize the interleaved structures to improve overall performance. Therefore, this study aims to investigate the impact of incorporating amorphous halloysite nanotubes (A-HNTs) within different layers of five unique layer arrangements on the low-velocity impact properties of interleaved carbon fiber-reinforced polymer (CFRP) structures. The low-velocity impact characteristics of the laminate were validated using a drop weight impact test, wherein the resulting impact damage modes and extent of damage were compared and evaluated under microscopic analysis. Each interleaved structure laminate according to whether nanoparticles are added was compared at impact energies of 10 J and 15 J. In the case of 10 J, the absorption energy showed a similar tendency in each structure. However, at 15 J, the absorption energy varies from structure to structure. Among them, a structure in which nanoparticles are not added exhibits the highest absorption energy. Additionally, various impact fracture modes were observed in each structure through optical microscopy.

Heating Characteristics of Carbon Fiber Polyimide-Coated by Electrophoretic Deposition (전기영동증착법으로 폴리이미드를 코팅한 탄소섬유의 발열 특성 연구)

  • Geon-Joo Jeong;Tae-Yoo Kim;Seung-Boo Jung;Kwang-Seok Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.1
    • /
    • pp.90-94
    • /
    • 2023
  • Carbon fiber(CF) with excellent thermal conductivity and electrical conductivity is attracting attention as an alternative material because metal heating elements have problems such as high heat loss and fire risk. However, since CF is oxidized and disconnected at about 200℃ or higher, the application of heating elements is limited, and CF heating elements in the form of vacuum tubes are currently used in some commercial heaters. In this work, polyimide(PI) with high heat resistance was coated on the surface of carbon fiber by electrophoretic deposition to prevent oxidation of CF in the atmosphere without using a vacuum tube, and the coating thickness and heat resistance were investigated according to the applied voltage. The heater made by connecting the PI-coated CF heating elements in series showed stable heating characteristics up to 292℃, which was similar to the heating temperature result of the heat transfer simulation. The PI layer coated by the electrophoretic deposition method is effective in preventing oxidation of CF at 200℃ or higher and is expected to be applicable to various heating components such as secondary batteries, aerospace, and electric vehicles that require heat stability.

Evaluation of Insecticidal Efficacy of Six Eco-friendly Agricultural Materials and Metarhizium anisopliae against Ramulus mikado (대벌레(Ramulus mikado)에 대한 유기농업자재 6종과 녹강균(Metarhizium anisopliae)의 살충 효과 평가)

  • Jong-Kook Jung;Bok-Nam Jung;Cha Young Lee;Keonhee E. Kim;Junheon Kim;Young Su Lee;Ji-Hyun Park
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.1
    • /
    • pp.117-125
    • /
    • 2023
  • Outbreaks of Ramulus mikado (Insecta: Phasmatodea: Phasmatidae) in the hilly areas of Mt. Bongsan, Mt. Cheonggye, and elsewhere in Seoul and Gyeonggi occurred from 2020 to 2021, causing serious defoliation. We evaluated the insecticidal effects of six eco-friendly organic materials and the insect-pathogenic fungus Metarhizium anisopliae against R. mikado. The fungus was isolated from naturally dead bodies of R. mikado in forest ecosystems. The results revealed that three eco-friendly organic materials containing azadirachtin or geraniol as active ingredients showed high mortality in the range of 85.2%-100%, which were rates similar to that of the chemical insecticide fenitrothion emulsifiable concentrate. All R. mikado adults that were sprayed with a conidial suspension of M. anisopliae at different concentrations were killed within a few days. In conclusion, three eco-friendly organic materials and M. anisopliae could be good alternatives to chemical insecticides.

Optimization of mix design of micro-concrete for shaking table test

  • Zhou, Ji;Gao, Xin;Liu, Chaofeng
    • Advances in concrete construction
    • /
    • v.13 no.3
    • /
    • pp.215-221
    • /
    • 2022
  • Considering their similar mass densities, an attempt was made to optimize the mix design of micro-concrete that used barite sand as an aggregate by substituting marble powder (5%, 10%, 20%, 30%, 40%, 50%, 70%), clay brick powder (30%, 50%, 70%), and fly ash (30%, 50%, 70%) for the concrete (by mass) to form specimens for shaking table tests. The test results showed that for these three groups of materials, the substitutions had little effect on the density. The barite sand played a decisive role in the density, and the overall density of the specimens reached approximately 2.9 g/cm3. The compressive strength and elastic modulus decreased with an increase in the substitution rates for the three types of materials. Among them, the 28 day compressive strength values of the 40% and 50% marble powder groups were 11.73 MPa and 8.33 MPa, respectively, which were 58.7% and 70.7% lower than the control group, respectively. Their elastic modulus values were 1.33×104 MPa and 1.42×104 MPa, respectively, which were 39.1% and 35% lower than those of the control group, respectively. The 28 day compressive strength values of the 50% and 70% clay brick powder groups were 13.13 MPa and 5.8 MPa, respectively, which were 53.8% and 79.6% lower than the control group, respectively. Their elastic modulus values were 1.54×104 MPa and 1.19×104 MPa, respectively, which were 29.7% and 45.4% lower than those of the control group, respectively. The 28 day compressive strength values of the 50% and 70% fly ash groups were 13.5 MPa and 7.1 MPa, respectively, which were 52.5% and 75% lower than those of the control group, respectively. Their elastic modulus values were 1.36×104 MPa and 0.95×104 MPa, respectively, which were 37.9% and 56.6% lower than those of the control group, respectively. There was a linear relationship between the 28 day compressive strength and elastic modulus, with the correlation coefficient reaching a value higher than 0.88. The test results showed that the model materials met the high density, low compressive strength, and low elastic modulus requirements for shaking table tests, and the test data of the three groups of different alternative materials were compared and analyzed to provide references and assistance for relevant model testers.

Biological assessment of a new ready-to-use hydraulic sealer

  • Francine Benetti ;Joao Eduardo Gomes-Filho ;India Olinta de Azevedo-Queiroz;Marina Carminatti;Leticia Citelli Conti;Alexandre Henrique dos Reis-Prado ;Sandra Helena Penha de Oliveira ;Edilson Ervolino ;Eloi Dezan-Junior ;Luciano Tavares Angelo Cintra
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.2
    • /
    • pp.21.1-21.12
    • /
    • 2021
  • Objectives: This study compared the cytotoxicity, biocompatibility, and tenascin immunolabeling of a new ready-to-use hydraulic sealer (Bio-C Sealer) with MTA-Fillapex and white MTA-Angelus. Materials and Methods: L929 fibroblasts were cultivated and exposed to undiluted and diluted material extracts. Polyethylene tubes with or without (the control) the materials were implanted into the dorsa of rats. At 7 days and 30 days, the rats were euthanized, and the specimens were prepared for analysis; inflammation and immunolabeling were measured, and statistical analysis was performed (p < 0.05). Results: MTA-Fillapex exhibited greater cytotoxicity than the other materials at all time points (p < 0.05). The undiluted Bio-C Sealer exhibited greater cytocompatibility at 6 and 48 hours than white MTA-Angelus, with higher cell viability than in the control (p < 0.05). White MTA-Angelus displayed higher cell viability than the control at 24 hours, and the one-half dilution displayed similar results at both 6 and 48 hours (p < 0.05). At 7 days and 30 days, the groups exhibited moderate inflammation with thick fibrous capsules and mild inflammation with thin fibrous capsules, respectively (p > 0.05). At 7 days, moderate to strong immunolabeling was observed (p > 0.05). After 30 days, the control and MTA-Fillapex groups exhibited strong immunolabeling, the white MTA-Angelus group exhibited moderate immunolabeling (p > 0.05), and the Bio-C Sealer group exhibited low-to-moderate immunolabeling, differing significantly from the control (p < 0.05). Conclusions: Bio-C Sealer and white MTA-Angelus exhibited greater cytocompatibility than MTA-Fillapex; all materials displayed adequate biocompatibility and induced tenascin immunolabeling.

Efficacy of retreatment NiTi files for root canals filled with calcium silicate-based sealer (칼슘실리케이트 계열 실러로 충전한 근관에서 재치료용 NiTi 파일의 효율성)

  • Jae-Yun, Hyun;Kyung-Mo, Cho;Se-Hee, Park;Yoon, Lee;Yoon-Joo, Lee;Jin-Woo, Kim
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.4
    • /
    • pp.213-221
    • /
    • 2022
  • Purpose: The efficacy of the amount of sealer in the root canal and two retreatment NiTi file systems in removing filling materials. Materials and Methods: Extracted premolars with a single root canal were selected for this study. After access opening and root canal preparation up to size #40/.06, the specimens were randomly divided into four groups. Gutta percha (GP) tapers of .06 or .04 were used for each group and filled using a single-cone filling technique with CeraSeal, a calcium silicate-based sealer. Each group was retreated either using the ProTaper Universal Retreatment System (PTUR) or the Hyflex Remover (HR). The time taken to remove the filling material, the amounts of apically extruded debris, and canal cleanliness were measured and compared. Results: The amount of sealer did not affect the efficiency when removing the filling materials. However, the filling material was removed faster in the HR group than in the PTUR group. Two types of NiTi files showed similar retreatment effects in the amounts of apically extruded debris and in the degree of canal cleanliness. Conclusion: The amount of sealer in canal filling had no significant effect on retreatability. Retreatment with HR removed filling materials is faster than PTUR. There was no difference in other removal efficiencies according to the type of retreatment NiTi file.

Sound Absorption Properties of Sound Absorption Materials Using Zelkova serrata Leaves

  • Eunji Bae;Junho Goh;Dahye Yeom;Kyungrok Won;Reekeun Kong;Heeseop Byeon
    • Journal of Forest and Environmental Science
    • /
    • v.40 no.2
    • /
    • pp.90-98
    • /
    • 2024
  • This study analyzes the characteristics of sound-absorbing materials made from forest by-products of the deciduous tree species Zelkova serrata (Z. serrata) by evaluating their sound absorption performance. Accordingly, sound-absorbing materials with varying sample thicknesses, leaf sizes, and drying conditions were fabricated. The sound absorption properties were measured using the impedance tube method via middle-type measurement tube (100 Hz-3,200 Hz). The sound absorption properties were evaluated using the average sound absorption coefficient (ASAC), which was calculated from the measured sound absorption coefficients at 250 Hz, 500 Hz, 1,000 Hz, and 2,000 Hz. The ASAC value significantly improved as the leaf size increased to 0.5×0.5 cm2, 1.0×1.0 cm2, and 2.0×2.0 cm2. The ASAC values under the two drying conditions were similar. There was no significant difference in ASAC according to the leaf size under the air-dried leaf condition, with a thickness of 2.50 cm. The highest ASAC value according to the sound-absorbing material thickness was 0.47 at a thickness of 2.50 cm and leaf size of 2.0×2.0 cm2 under the air-dried leaf condition. In addition, the variation in ASAC was 0.23, indicating that the sound absorption performance according to leaf thickness was more significant than the difference in absorption properties according to leaf size. A sound absorption coefficient (SAC) of 0.4 or higher was observed across the measurable frequency band (100 Hz-3,200 Hz). Furthermore, the SAC values with respect to leaf size and thickness were close to 1 in the high-frequency range above 2,000 Hz. Therefore, it is considered that sound-absorbing materials using Z. serrata leaves are advantageous in the field of absorbing noise in a high-frequency band of 2,000 Hz or more, and it is better to manufacture a thickness of 2.50 and 2.0×2.0 cm2.

Exploring Chemistry Teachers' Noticing of High School Student's Chemistry Problem-Solving Materials (고등학생의 화학 문제해결 산출물에 대한 화학 교사의 노티싱(Noticing) 탐색)

  • Nayoon Song;Shinyoung Bae;Taehee Noh
    • Journal of The Korean Association For Science Education
    • /
    • v.44 no.5
    • /
    • pp.379-390
    • /
    • 2024
  • In this study, chemistry teachers' noticing of high school student's chemistry problem-solving materials was explored. Fourteen high school teachers participated in the study. We created materials documenting student's problem-solving processes and conducted semi-structured interviews with teachers. The results of the study revealed that most teachers only paid attention to errors in student's scientific thinking, and the number of teachers who paid attention to scientific thinking partially or completely was the same. In interpreting, teachers were most likely to provide an exaggerated interpretation with evidence, followed by a correct interpretation with evidence, and an incorrect interpretation with some evidence. In responding, many teachers suggested responses that aligned with student's thinking, with slightly more aligning with student's specific thinking than with general thinking. Teachers who suggested actions that aligned with student's specific thinking tended to be content-focused, with some vague or off-target responses. Teachers who suggested responses that aligned with student's general thinking tended to be similar to those who suggested responses that aligned with student's specific thinking, but neither type of teacher suggested student-centered responses. Some teachers suggested responses that did not align with student thinking. Based on these findings, we discussed ways to improve teachers' noticing of student problem-solving.