DOI QR코드

DOI QR Code

Emissions and Combustion Dynamics with Fuel Injection Position for Low-swirl Nozzles of Gas Turbine Combustor

복합발전 가스터빈 연소기용 저선회 노즐의 연료 분사 위치에 따른 배기배출 및 연소진동 특성

  • Jeongjae, Hwang (Gas Turbine Research Team, Dpt. of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials) ;
  • Won June, Lee (Gas Turbine Research Team, Dpt. of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials) ;
  • Min Kuk, Kim (Gas Turbine Research Team, Dpt. of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials) ;
  • Han Seok, Kim (Gas Turbine Research Team, Dpt. of Zero-carbon Fuel and Power Generation, Korea Institute of Machinery & Materials)
  • 황정재 (한국기계연구원 무탄소연료발전연구실 가스터빈팀) ;
  • 이원준 (한국기계연구원 무탄소연료발전연구실 가스터빈팀) ;
  • 김민국 (한국기계연구원 무탄소연료발전연구실 가스터빈팀) ;
  • 김한석 (한국기계연구원 무탄소연료발전연구실 가스터빈팀)
  • Received : 2022.12.13
  • Accepted : 2022.12.24
  • Published : 2022.12.31

Abstract

In this study, two low-swirl nozzles with the same SN (Swirl Number) but different mass ratio (m) of the core part and the swirler part were designed to perform an atmospheric pressure combustion test. For each nozzle, a combustion test was conducted according to the adiabatic flame temperature, and the flame structure, emissions, and combustion instability mode were identified. Although the flame structure was significantly different, the CO emission was similar, and the NOx emission was also more related to combustion dynamics than the flame structure. Combustion dynamics and NOx emission were identified while adjusting the convection delay time by changing the position of the fuel injection nozzle. It was confirmed that when the convection delay time is in the region of (3+4n)/4T±1/4T (n=0,1,2,...), the combustion instability is strong, and in the opposite case, the combustion instability is very weak.

본 연구에서는 SN(Swirl Number)는 같지만 코어부와 스월러부의 질량유량비(m)가 다른 저선회 노즐 2종을 설계하여 상압 연소성능 시험을 수행하였다. 각 노즐에 대해 단열화염온도에 따른 연소성능 실험을 수행하였고 화염구조 특성, NOx 배출 특성, 연소진동 모드를 파악하였다. 화염구조가 크게 차이가 있었지만 CO 배츨 특성은 유사하였고 NOx 배출 특성도 화염구조보다는 연소진동과 더 큰 관련성이 있음을 보였다. 연료노즐의 위치를 변경하여 대류지연시간을 조절하면서 연소진동 및 NOx 배출 특성을 파악하였는데 대류지연시간이 연소진동 주기의 (3+4n)/4±1/4 (n=0,1,2,...) 영역에 들어올 때 진소진동이 강하게 나타나고 반대의 경우는 연소진동이 아주 약하게 발생함을 확인하였다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행된 연구임(20217010100030, 표준 가스복합발전용 주기기 설계 및 제작 기술 개발)

References

  1. Portillo, J. E., and Laster, R., "Low NOx Combustor design for 𝜂 > 65% CC", UTSR Conference November, (2015)
  2. Cheng, R.K., "Velocity and Scalar Characteristics of Premixed Turbulent Flames Stabilized By Weak Swirl", Combust. Flame, 101, 1-14, (1995) https://doi.org/10.1016/0010-2180(94)00196-Y
  3. Bray, K.N.C., Libby, P.A., Moss, J.B., "Unified modeling approach for premixed turbulent combustion - part I: general formulation", Combust. Flame, 61, 87-102, (1985) https://doi.org/10.1016/0010-2180(85)90075-6
  4. Cheng, R. K., Shepherd, I. G., "The influence of burner geometry on premixed turbulent flame propagation", Combust. Flame, 85, 7-26, (1991) https://doi.org/10.1016/0010-2180(91)90174-A
  5. Cheng, R. K., Littlejohn, D., "Laboratory Study of Premixed H2/Air and H2/N2/Air Flames in a Low-Swirl Injector for Ultralow Emissions Gas Turbine", J. Eng. Gas Turb. Power, 130, 031503, (2008)
  6. Cheng, R. K., Shepherd, I. G., Bedat, B., Talbot, L., "Premixed turbulent flame structures in moderate and intense isotropic turbulence", Combust. Sci. Technol., 174, 29-59, (2002)
  7. Jeong, H., Han, M., Kang, K., Lee, Y., Lee, K., "An experimental Study on the Effect of a Turbulence Generating Plate in Low Swirl Combustor", J. Mech. Sci. Technol., 31(12), 6077-6084, (2017) https://doi.org/10.1007/s12206-017-1152-7
  8. Jeong, H. H., Lee, K. M.," Effect of Swirl Angles and Combustion Characteristics of Low Swirl Model Combustor", J. Korean Soc. Propul. Eng., 20(4), 40-49, (2016) https://doi.org/10.6108/KSPE.2016.20.4.040
  9. Therkelsen, P. L., Littlejohn, D., Cheng, R. K., "Parametric study of low swirl injector geometry on its operability", ASME, GT2012-68436, 1-10, (2012)
  10. Han, M. S., Lee, K. M., "Combustion characteristics by plate shape of turbulence generator in low swirl combustor : Part I Non-reactive Isothermal Flow", J. Korean Soc. Combust., 25(1), 1-11, (2020) https://doi.org/10.15231/jksc.2020.25.1.001
  11. Kim. J., Lee, K. M., "Analysis of Turbulent Premixed Flames in V-shape Flames with Fractal Turbulence Generators: Part. I Turbulent Flow Characteristics in a Non-Reacting Field", J. Korean Soc. Combust., 26(2), 53-69, (2021) https://doi.org/10.15231/jksc.2021.26.2.053
  12. Kang. Y., Lee, K. M., "The Study of Turbulent Flame Characteristics by Plate Shape of Turbulence Generator", J. Korean Soc. Combust., 26(3), 20-34, (2021) https://doi.org/10.15231/jksc.2021.26.3.020
  13. Lieuwen, T. C., "Investigation of combustion instability mechanisms in premixed gas turbines", Ph.D. Thesis, (1999)