• Title/Summary/Keyword: silver-resistance

Search Result 253, Processing Time 0.027 seconds

Factors Influencing Post-Adoption Resistance to Self-Order Kiosks at Fast-Food Restaurants: A Focus on the New-Silver Generation

  • Hwaran Lee;Eunkyung Kang;Kyung Young Lee;Minwoo Lee;Sung-Byung Yang
    • Journal of Smart Tourism
    • /
    • v.3 no.2
    • /
    • pp.23-36
    • /
    • 2023
  • Due to the phenomenon of aging, a new consumer segment known as the "new-silver generation" is emerging. Unlike the previous silver generation, this generation possesses significant economic power and consuming willingness, attracting attention from consumer goods companies. However, both the new-silver generation and the elderly face challenges in adopting contactless or self-service technologies such as self-order kiosks, resulting in negative reactions. Therefore, this study aims to investigate the attitude and response of the newsilver generation towards kiosks, as well as the factors influencing their resistance to such technology. By applying theoretical perspectives from the innovation resistance model, technostress theory, and the value-based model, this study identifies influencing factors for innovation resistance among the new-silver generation when using contactless technologies implemented in fast-food restaurants. The findings indicate that a lower awareness of new technologies and services corresponds to decreased adoption resistance, while a higher perceived value leads to more positive behaviors and attitudes among the new-silver generation utilizing kiosks at fast-food restaurants.

An Experimental Study on the Rolling Resistance of Bearing Surfaces Covered by Pure Silver Film (은 박막이 코팅된 베어링 표면의 구름 저항 거동 고찰)

  • 양승호;공호성;윤의성;권오관
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.101-110
    • /
    • 1997
  • An experimental study was performed to discover the tribological behaviors of pure silver coated 52100 bearing steel. Pure silver coatings ranging from 80 nm to several micrometers were produced by a thermal evaporation coating method. Experiments using a thrust ball bearing-typed rolling test-rig were performed for the investigations of the influence of coating thickness on the tribological rolling behavior. The existence of optimum film thickness which revealed minimum rolling resistance was discovered. A careful analysis on the contact surfaces for the optimum film thickness has been performed. The contact patches produced by the transferred silver films played an important role for the rolling resistance to keep low.

  • PDF

An Experimental Study on the Rolling Resistance of Bearing Surfaces Covered by Pure Silver Film (은 박막이 코팅된 베어링 표면의 구름 저항 거동 고찰)

  • 양승호;공호성;윤의성;권오관
    • Tribology and Lubricants
    • /
    • v.13 no.3
    • /
    • pp.85-92
    • /
    • 1997
  • An experimental study was performed to discover the tribological behaviors of pure silver coated 52100 bearing steel. Pure silver coatings ranging from 80 nm to several micrometers were produced by a thermal evaporation coating method. Experiments using a thrust ball bearing-typed rolling test-rig were performed for the investigations of the influence of coating thickness on the tribological rolling behavior. The existence of optimum film thickness which revealed minimum rolling resistance was discovered. A careful analysis on the contact surfaces for the optimum film thickness has been performed. The contact patches produced by the transferred silver films played an important role for the rolling resistance to keep low.

Enhancement of Electrical Conductivity for Ag Grid using Electrical Sintering Method (정전류 전기 소결법을 이용한 Ag 전극 배선의 전도성 향상)

  • Hwang, Jun Y.;Moon, Y.J.;Lee, S.H.;Kang, K.;Kang, H.;Cho, Y.J.;Moon, S.J.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.114.1-114.1
    • /
    • 2011
  • Electrical sintering of the front electrode for crystalline silicon solar cells was performed applying a constant DC current to the printed lines. Conducting lines were printed on glass substrate by a drop-on-demand (DOD) inkjet printer and silver nanoparticle ink. Specific resistance and microstructure of sintered silver lines and were measured with varying DC current. To find the relation between temperature increase with changing applied current and specific resistance, temperature elevation was also calculated. Sintering process finished within a few milliseconds. Increasing applied DC current, specific resistance decreased and grain size increased after sintering. Achieved minimum specific resistance is approximately 1.7 times higher than specific resistance of the bulk silver.

  • PDF

Characteristics of electrically conductive adhesives filled with silver-coated copper

  • Nishikawa, Hiroshi;Terad, Nobuto;Miyake, Koich;Aoki, Akira;Takemoto, Tadashi
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.217-220
    • /
    • 2009
  • Conductive adhesives have been investigated for use in microelectronics packaging as a lead-free solder substitute due to their advantages, such as low bonding temperature. However, high resistivity and poor mechanical behavior may be the limiting factors for the development of conductive adhesives. The metal fillers and the polymer resins provide electrical and mechanical interconnections between surface mount device components and a substrate. As metal fillers used in conductive adhesives, silver is the most commonly used due to its high conductivity and the stability. However the cost of conductive adhesives with silver fillers is much higher than usual lead-free solders and silver has poor electro-migration performance. So, copper can be a promising candidate for conductive filler metal due to its low resistivity and low cost, but oxidation causes this metal to lose its conductivity. In this study, electrically conductive adhesives (ECAs) using surface modified copper fillers were developed. Especially, in order to overcome the problem associated with the oxidation of copper, copper particles were coated with silver, and the silver-coated copper was tested as a filler metal. Especially the effect of silver coating on the electrical resistance just after curing and after aging was investigated. As a result, it was found that the electrical resistance of ECA with silver-coated copper filler was clearly lower and more stable than that of ECA with pure copper filler after curing process. And, during high temperature storage test, the degradation rate of electrical resistance for ECA with silver coated copper filler was quite slower than that for ECA with pure copper filler.

  • PDF

Fabrications of Silver Nanowire/NiO Based High Thermal-Resistance Hybrid Transparent Electrode (은나노선/Ni 산화물 고내열성 하이브리드 투명전극의 형성)

  • Jung, Sunghoon;Lee, Seunghun;Kim, Do-Geun
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.486-491
    • /
    • 2017
  • Silver nanowire (AgNW) transparent electrode is one of next generations of flexible and transparent electrode. The electrode shows high conductivity and high transparency comparable to ITO. However, the electrode is weak against heat. The wires are separated into nanodots at temperature above $200^{\circ}C$. It causes the electrical resistance increase. Moreover, it is vulnerable to oxygen and moisture in the atmosphere. The improvement of thermal and moisture resistance of silver nanowire transparent electrode is the most important for commercializing. We proposed silver nanowires transparent electrode which is capped with very thin nickel oxide layer. The nickel oxide layer is five nanometers of thickness, but the heat and moisture resistance of the transparent electrode is effectively improved. The AgNW/NiO electrode can endure at $300^{\circ}C$ of temperature for 30 minutes, and resistance is not increased for 180 hours at $85^{\circ}C$ of temperature and 85% of relative humidity. We showed an applications of transparent and flexible heater using the electrode, the heater is operated more than $180^{\circ}C$ of temperature.

Fabrication of silver stabilizer layer by coating process using nano silver paste on coated conductor (나노실버페이스트를 사용하는 코팅공정에 의한 coated conductor의 은 안정화층 제조)

  • Lee, Jong-Beom;Kim, Byeong-Joo;Kim, Hye-Jin;Yoo, Yong-Su;Lee, Hee-Gyoun;Hong, Gye-Won
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.1-4
    • /
    • 2009
  • Mechanical and electrical properties of silver stabilizer layer of coated conductor, which as prepared with nano silver paste as starting materials, have been investigated, Nano silver paste was coated on a YBCO film by dip coating process at a diping speed of 20m/min. Coated film was dried in air and heat treated at $400{\sim}700^{\circ}C$ in an oxygen atmosphere. Adhesion strength between YBCO and silver layer was measured by a tape est(ASTM D 3359). Hardness and electrical conductivity of the samples were measured by pencil hardness test (ASTM D 3363) and volume resistance test by LORESTA-GP (MITSHUBISHD, respectively. The sample heat-treated at $500^{\circ}C$ showed poor adhesion 1B, but samples heat treated at higher than $600^{\circ}C$ showed enhanced adhesion of 5B. The silver layer heat-treated at $700^{\circ}C$ showed the high hardness value larger than 9 H, low volume resistance, surface resistance value as well as superior current carrying capacity compared to sputtered silver. SEM observations showed that a dense silver layer was formed with a thickness of about $2{\mu}m$. Dip coated silver layer prepared by using nano silver paste showed superior electrical and mechanical characteristics.

An Experimental Study on the Rolling Resistance of Silver Coating Films Modified by Plasma Surface Treatments (플라즈마 표면개질 처리된 은 박막의 구름저항거동 고찰)

  • 양승호;공호성;윤의성;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.49-58
    • /
    • 1998
  • An experimental study was performed to discover the effect of adsorbed moisture on the rolling resistance behavior of pure silver coated 52100 bearing steel. Plasma surface modifications were performed on the silver coated specimen to change the wetting characteristics. Experiments using a thrust ball beating-typed roiling test-rig were performed under vacuum, dry air and various tmmidity conditions. Results showed that the changes in the wetting characteristics influenced remarkably on the silver particle agglomeration and resulted in the different behavior of rolling resistance with humidity.

  • PDF

An Experimental Study on the Rolling Resistance of Silver-Coated Films Modified by Plasma Surface Treatments (플라즈마 표면개질 처리된 은 박막의 구름저항거동 고찰)

  • 양승호;공호성;윤의성;김대은
    • Tribology and Lubricants
    • /
    • v.15 no.4
    • /
    • pp.321-327
    • /
    • 1999
  • An experimental study was performed to discover the effect of adsorbed moisture on the rolling resistance behavior of pure silver-coated 52100 bearing steel. Plasma surface modifications were performed on the silver-coated specimen to change the wetting characteristics. Experiments using a thrust ball bearing-type rolling test-rig were performed under vacuum, dry air and various humidity conditions. Results showed that the changes in the wetting characteristics influenced remarkably on the silver particle agglomeration and resulted in the different behavior of rolling resistance with humidity.

Evaluation of Contact Resistance between Carbon Fiber/Epoxy Composite Laminate and Printed Silver Electrode for Damage Monitoring (손상 감지 모니터링을 위한 탄소섬유 복합재료와 인쇄된 은 전극 사이의 접촉저항 평가)

  • Jeon, Eun-Beom;Takahashi, Kosuke;Kim, Hak-Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.5
    • /
    • pp.377-383
    • /
    • 2014
  • An addressable conducting network (ACN) makes it possible to monitor the condition of a structure using the electrical resistance between electrodes on the surface of a carbon fiber reinforced plastics (CFRP) structure. To improve the damage detection reliability of the ACN, the contact resistances between the electrodes and CFRP laminates needs to be minimized. In this study, silver nanoparticle electrodes were fabricated via printed electronics techniques on a CFRP composite. The contact resistance between the silver electrodes and CFRP were measured with respect to various fabrication conditions such as the sintering temperature of the silver nano-ink and the surface roughness of the CFRP laminates. The interfaces between the silver electrode and carbon fibers were observed using a scanning electron microscope (SEM). Based on this study, it was found that the lowest contact resistance of $0.3664{\Omega}$ could be achieved when the sintering temperature of the silver nano-ink and surface roughness were $120^{\circ}C$ and 0.230 a, respectively.