DOI QR코드

DOI QR Code

Evaluation of Contact Resistance between Carbon Fiber/Epoxy Composite Laminate and Printed Silver Electrode for Damage Monitoring

손상 감지 모니터링을 위한 탄소섬유 복합재료와 인쇄된 은 전극 사이의 접촉저항 평가

  • Jeon, Eun-Beom (Department of Mechanical Convergence Engineering, Hanyang University) ;
  • Takahashi, Kosuke (Department of Mechanical Sciences and Engineering, Tokyo Institute of Technology) ;
  • Kim, Hak-Sung (Department of Mechanical Convergence Engineering, Hanyang University)
  • 전은범 (한양대학교 융합기계공학과) ;
  • ;
  • 김학성 (한양대학교 융합기계공학과)
  • Received : 2014.09.15
  • Accepted : 2014.10.15
  • Published : 2014.10.30

Abstract

An addressable conducting network (ACN) makes it possible to monitor the condition of a structure using the electrical resistance between electrodes on the surface of a carbon fiber reinforced plastics (CFRP) structure. To improve the damage detection reliability of the ACN, the contact resistances between the electrodes and CFRP laminates needs to be minimized. In this study, silver nanoparticle electrodes were fabricated via printed electronics techniques on a CFRP composite. The contact resistance between the silver electrodes and CFRP were measured with respect to various fabrication conditions such as the sintering temperature of the silver nano-ink and the surface roughness of the CFRP laminates. The interfaces between the silver electrode and carbon fibers were observed using a scanning electron microscope (SEM). Based on this study, it was found that the lowest contact resistance of $0.3664{\Omega}$ could be achieved when the sintering temperature of the silver nano-ink and surface roughness were $120^{\circ}C$ and 0.230 a, respectively.

위치 감응형 전극 네트워크(addressable conducting network, ACN)는 탄소섬유 복합재료와 전극 사이의 접촉저항을 통해 구조물의 손상 감지가 가능하다. 손상 감지를 위한 위치 감응형 전극 네트워크의 신뢰성을 향상시키기 위해서는 전극과 복합재료 사이의 접촉저항이 최소화되어야 한다. 본 연구에서는 은 나노 전극을 탄소섬유 복합재료 위에 인쇄전자기술을 이용하여 제작하였다. 은 전극이 형성된 복합재료는 은 나노 잉크의 소결온도와 복합재료의 표면거칠기에 따라 제작되었으며, 이에 따른 접촉저항을 측정하였다. 또한, 전자주사현미경(scanning electron microscope, SEM)을 통해 전극과 복합재료 사이의 계면을 관찰하였다. 본 연구를 통해, 은 나노 잉크의 소결온도가 $120^{\circ}C$, 복합재료의 표면거칠기가 0.230a일 때, $0.3664{\Omega}$의 최소 접촉저항을 나타냈다.

Keywords

References

  1. J. S. Park, K. Takahashi, Z. Guo, Y. Wang, E. Bolanos, C. Hamann-Schaffner, F. Wudl and H. T. Hahn, "Toward development of a self-healing composite using a mendable polymer and resistive heating," Journal of Composite Materials, Vol. 42, pp. 2869-2881 (2008) https://doi.org/10.1177/0021998308097280
  2. J. S. Park, H. S. Kim and H. T. Hahn, "Healing behavior of a matrix crack on a carbon fiber/mendomer composite," Composite Science and Technology, Vol. 69, pp. 1082-1087 (2009) https://doi.org/10.1016/j.compscitech.2009.01.031
  3. X. X. Chen, M. A. Dam, K. Ono, A. Mal, H. B. Shen, S. Sheran and F. Wudl, "A thermally re-mendable cross-linked polymeric material," Science, Vol. 295, pp. 1698-1702 (2002) https://doi.org/10.1126/science.1065879
  4. RX. X. Chen, F. Wudl, A. Mal, H. Shen and S. R. Nutt, "New thermally remendable highly cross-linked polymeric materails," Macromolecules, Vol. 36, pp. 1802-1807 (2003) https://doi.org/10.1021/ma0210675
  5. S. D. Bergman and F. Wudl, "Mendable polymers," Journal of Materials Chemistry, Vol. 18, pp. 41-62 (2008) https://doi.org/10.1039/B713953P
  6. K. Takahashi, J. S. Park and H. T. Hahn, "An addressable conducting network for autonomic structural health management of composite structures," Smart Materials and Structures, Vol. 19, pp. 105023 (2010) https://doi.org/10.1088/0964-1726/19/10/105023
  7. K. Takahashi and H. T. Hahn, "Autonomic thermal management of graphite fiber/epoxy composite structures using an addressable conducting network," Composite Part B, Vol. 43, pp. 833-840 (2013)
  8. J. H. Kang, "Self-diagnosis of damage in carbon fiber reinforced composites using electrical residual resistance measurement," Journal of the Korean Society for Nondestructive Testing, Vol. 29, No. 4, pp. 323-330 (2009)
  9. K. Takahashi and H. T. Hahn, "Toward practical application of electrical resistance change measurement for damage monitoring using an addressable conducting network," Structural Health Monitoring, Vol. 11, pp. 367-377 (2013)
  10. N. Kwon and H. T. Hahn, "Resistance heating for self-healing composites," Journal of Composite Materials, Vol. 41, pp. 635-654 (2007)
  11. "Standard Test Method for Scratch Hardness of Materials Using a Diamond Stylus," American Society for Testing and Materials; G171-03 (2004)
  12. "Standard Test Methods for Measuring Adhesion by Tape Test," American Society for Testing and Materials; D3359-97 (2004)
  13. S. H. Jang, Y. K. Seo, J. R. Choi, T. H. Kim, J. M. Cho, S. G. Kim and D. H. Kim, "Sintering of inkjet printed copper nanoparticles for flexible electronics," Scripta Materialia, Vol. 62, pp. 258-261 (2010) https://doi.org/10.1016/j.scriptamat.2009.11.011
  14. K. S. Kim, Y. C. Lee, J. W. Kim and S. B. Jung, "Flexibility of silver conductive circuits screen-printed on a polyimide substrate," Journal of Nanoscience and Nanotechnology, Vol. 11, pp. 1493-1498 (2011) https://doi.org/10.1166/jnn.2011.3368
  15. http://www.mrc.co.jp/pyrofil/english/product/pre.html
  16. L. Kogut and K. Komvopoulos, "Electrical contact resistance theory for conductive rough surface," Journal of Applied Physics, Vol. 93, pp. 3153-3162 (2003)
  17. B. Avasarala and P. Haldar, "Effect of surface roughness of composite bipolar plates on the contact resistance of a proton exchange membrane fuel cell," Journal of Power Source, pp. 576-85 (2009)
  18. P. A. Steinmann, Y. Tardy and H. E. Hintermann, "Adhesion testing by the scratch test method: The influence of intrinsic and extrinsic parameters on the critical load," Thin Solid Film, Vol. 154, pp. 333-349 (1987) https://doi.org/10.1016/0040-6090(87)90377-4
  19. H. Deng, T. W. Scharf and J. A. Barnard, "Adhesion assessment of silicon carbide, carbon, and carbon nitride ultrathin overcoats by nanoscratch techniques," Journal of Applied Physics, Vol. 81, No. 8, pp. 5396-5398 (1997) https://doi.org/10.1063/1.364551