• Title/Summary/Keyword: silicon nitride film

Search Result 209, Processing Time 0.03 seconds

Simulation of Piezoelectric Dome-Shaped-Diaphragm Acoustic Transducers

  • Han, Cheol-Hyun;Kim, Eun-Sok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.1
    • /
    • pp.17-23
    • /
    • 2005
  • This paper describes the simulation of a micromachined dome-shaped-diaphragm acoustic transducer built on a $1.5{\mu}m$ thick silicon nitride diaphragm ($2,000{\mu}m$ in radius, with a circular clamped boundary on a silicon substrate) with electrodes and piezoelectric ZnO film in a silicon substrate. Finite element analysis with ANSYS 5.6 has been performed to analyze the static and dynamic behaviors of the transducer under both pressure and voltage loadings.

Humidity sensing properties of carbon nitride film according to fabrication conditions (제조 조건에 따른 질화탄소막의 습도 감지 특성)

  • Lee, Sung-Pil;Kim, Jung-Hoon;Lee, Hyo-Ung;Lee, Ji-Gong
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.343-349
    • /
    • 2005
  • Carbon nitride films were deposited on various substrates for humidity sensors with meshed electrode by reactive RF magnetron sputtering system. As the ratio of injected nitrogen was decreased, the sensitivity of sensor was increased. When the ratio of injected nitrogen was $50{\sim}70%$, the sample showed the best linearity. The sensor impedance changed from $95.4{\;}k{\Omega}$ to $2.1{\;}k{\Omega}$ in a relative humidity range of 5 % to 95 %. The humidity sensors based on silicon wafer revealed higher lineality and faster response than those of alumina or quartz substrates. The adsorption saturation time of the sample was about 80 sec, and its desorption time was about 90 sec.

Formation of ultra-thin $Ta_{2}O_{5}$ film on thermal silicon nitrides (열적 성장된 실리콘 질화막위에 산화 탄탈륨 초박막의 형성)

  • 이재성;류창명;강신원;이정희;이용현
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.11
    • /
    • pp.35-43
    • /
    • 1995
  • To obtain high quality of $Ta_{2}O_{5}$ film, two dielectric layers of $Si_{3}N_{4}$ and $Ta_{2}O_{5}$ were subsequently formed on Si wafer. Silicon nitride films were thermally grown in 10 Torr ammonia ambient by R.F induced heating system. The thickness of thermally grown $Si_{3}N_{4}$ film was able to be controlled in the range of tens $\AA$ due to the self-limited growth property. $Ta_{2}O_{5}$ film of 200$\AA$ thickness was then deposited on the as-grown $Si_{3}N_{4}$ film about 25$\AA$ thickness by sputtering method and annealed at $900^{\circ}C$in $O_{2}$ ambient for 1hr. Stoichiometry film was prepared by the annealing in oxygen ambient. Despite the high temperature anneal process, silicon oxide layer was not grown at the interface of the layered films because of the oxidation barrier effect of Si$_{3}$N$_{4}$ film. The fabricated $Ta_{2}O_{5}$/$Si_{3}N_{4}$ film showed low leakage current less than several nA and high dielectric breakdown strength.

  • PDF

The Study of Silicon Nitride Passivation Layer on OLED ($Si_3N_4$ 페시베이션 박막이 유기발광다이오드 소자에 주는 영향 연구)

  • Park, Il-Houng;Kim, Kwan-Do;Shin, Hoon-Kyu;Yoon, Jae-Kyoung;Yun, Won-Min;Kwon, Oh-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.332-333
    • /
    • 2009
  • In this paper, we have deposited silicon nitride films by plasma-enhanced chemical vapor deposition (PECVD). For films deposited under optimized conditions, the mechanism of plasma-enhanced vapor deposition of silicon nitride is studied by varying process parameters such as rf power, gas ratio, and chamber pressure. It was demonstrated that organic light-emitting diode(OLEDs) were fabricated with the inorganic passivation layer processing. We have been studied the inorganic film encapsulation effect for organic light-emitting diodes (OLED). To evaluate the passivation layer, we have carried out the fabrication of OLEDs and investigate with luminescence and MOCON.

  • PDF

Study the Properties of Silicon Nitride Films prepared by High Density Plasma Chemical Vapor Deposition

  • Gangopadhyay, Utpal;Kim, Do-Young;Parm, Igor Oskarovich.;Chakrabarty, Kaustuv;Kim, Chi-Hyung;Shim, Myung-Suk;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1127-1130
    • /
    • 2003
  • The characteristics of silicon nitride films deposited in a planar coil reactor using a simple high-density inductively coupled plasma chemical vapor deposition technique have been investigated. The process gases used during silicon nitride deposition cycle were pure nitrogen and a mixture of silane and helium. It has been pointed out that the strong H-atom released from the growing SiN film and Si-N bond healing are responsible for the improved electrical and passivation properties of SiN.

  • PDF

Electrical Properties of Laser CVD Silicon Nitride Film (Laser CVD SiN막의 전기적 특성)

  • Kim, Yong-Woo;Kim, Sang-Wook;Park, Jong-Wook;Kim, Chun-Sub;Sung, Yung-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.85-87
    • /
    • 1990
  • Silicon nitride film was deposited on a silicon wafer using a laser CVD(LCVD) technique, which is based on direct photolysis of $SiH_4/NH_3$ gas mixture by ArF laser beam(${\lambda}=193\;nm$). The refractive index of deposited SiN film is 1.9 at the temperature of $300^{\circ}C$, pressure of 5 torr. The breakdown field strength of LCVD SiN film was 10MV/cm. In IR spectrum, the absorption peak of Si-H, N-H, and Si-N is detected and it is shown that hydrogen is included in SiN film. From analysis of absorption band. it is calculated that density of Si-H, N-H bond is higher than $5{\times}10^{22}cm^{-3}$. LCVD MIS capacitor and PECVD MIS capacitor have injection-type hysteresis but it is known that hysteresis loss of LCVD MIS capacitor is smaller than that of PECVD MIS capacitor. It means that Interface state density of LCVD capacitor is smaller than that of PECVD capacitor. In addition, the flatband voltage($V_{FB}$) of LCVD is smaller than that of PECVD capacitor. And it means that fixed charged density($Q_{FIX}$) of LCVD capacitor is smaller than that of PECVD MIS capacitor.

  • PDF

An Introduction of an Apparatus for Rapid Heating Coal Gasification (Cahn Balance를 이용한 급속 가열방식의 석탄가스화 장치 소개)

  • Lee, Joong-Kee;Lee, Sung-Ho;Lim, Tae-Hoon
    • Applied Chemistry for Engineering
    • /
    • v.2 no.4
    • /
    • pp.393-398
    • /
    • 1991
  • An experimental reactor system was devised and employed to examine catalytic coal gasification. A 4-kw tungsten halogen lamp heater combinded with a graphite sample basket coated with silicon nitride film made rapid heating and cooling possible. Also a small graphite cap on the thermocouple tip which located just beneath the sample basket helped remarkably to read real temperatures. Silicon nitride film on the basket and the cap showed very good protection against the reaction between graphite and oxidant gases during the experiments. The weight of specimen could be continuously measured without disturbance.

  • PDF

The effect of thermal anneal on luminescence and photovoltaic characteristics of B doped silicon-rich silicon-nitride thin films on n-type Si substrate

  • Seo, Se-Young;Kim, In-Yong;Hong, Seung-Hui;Kim, Kyung-Joong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.141-141
    • /
    • 2010
  • The effect of thermal anneal on the characteristics of structural properties and the enhancement of luminescence and photovoltaic (PV) characteristics of silicon-rich silicon-nitride films were investigated. By using an ultra high vacuum ion beam sputtering deposition, B-doped silicon-rich silicon-nitride (SRSN) thin films, with excess silicon content of 15 at. %, on P-doped (n-type) Si substrate was fabricated, sputtering a highly B doped Si wafer with a BN chip by N plasma. In order to examine the influence of thermal anneal, films were then annealed at different temperature up to $1100^{\circ}C$ under $N_2$ environment. Raman, X-ray diffraction, and X-ray photoemission spectroscopy did not show any reliable evidence of amorphous or crystalline Si clusters allowing us concluding that nearly no Si nano-cluster could be formed through the precipitation of excess Si from SRSN matrix during thermal anneal. Instead, results of Fourier transform infrared and X-ray photoemission spectroscopy clearly indicated that defective, amorphous Si-N matrix of films was changed to be well-ordered thanks to high temperature anneal. The measurement of spectral ellipsometry in UV-visible range was carried out and we found that the optical absorption edge of film was shifted to higher energy as the anneal temperature increased as the results of thermal anneal induced formation of $Si_3N_4$-like matrix. These are consistent with the observation that higher visible photoluminescence, which is likely due to the presence of Si-N bonds, from anneals at higher temperature. Based on these films, PV cells were fabricated by the formation of front/back metal electrodes. For all cells, typical I-V characteristic of p-n diode junction was observed. We also tried to measure PV properties using a solar-simulator and confirmed successful operation of PV devices. Carrier transport mechanism depending on anneal temperature and the implication of PV cells based on SRSN films were also discussed.

  • PDF

Low Temperature Processes of Poly-Si TFT Backplane for Flexible AM-OLEDs

  • Hong, Wan-Shick;Lee, Sung-Hyun;Cho, Chul-Lae;Lee, Kyung-Eun;Kim, Sae-Bum;Kim, Jong-Man;Kwon, Jang-Yeon;Noguchi, Takashi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.785-789
    • /
    • 2005
  • Low temperature deposition of silicon and silicon nitride films by catalytic CVD technique was studied for application to thin film transistors on plastic substrates for flexible AMOLEDs. The substrate temperature initially held at room temperature, and was controlled successfully below $150^{\circ}C$ during the entire deposition process. Amorphous silicon films having good adhesion, good surface morphology and sufficiently low content of atomic hydrogen were obtained and could be successfully crystallized using excimer laser without a prior dehydrogenation step. $SiN_x$ films showed a good refractive index, a high deposition rate, a moderate breakdown field and a dielectric constant. The Cat-CVD silicon and silicon nitride films can be good candidates for fabricating thin films transistors on plastic substrates to drive active-matrix organic light emitting display.

  • PDF

Fabrication of Multi-stepped Three Dimensional Silicon Microstructure for INS Grade Servo Accelerometer (관성 항법 장치급 서보 가속도계용 다단차 3차원 실리콘 미세 구조물 제작)

  • Yee, Young-Joo;Lee, Sang-Hoon;Chun, Kuk-Jin;Kim, Yong-Kwon;Cho, Dong-Il
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.425-427
    • /
    • 1996
  • New fabrication technique was developed to make three dimensional silicon microstructure with five fold vertical steps through entire wafer thickness. Each step is pre-defined on multiply stacked thermal oxide and silicon nitride (O/N) layers by photolithographies. Multi-stepped silicon microstructure is formed by anisotropic etch in aqueous KOH solution with the patterned nitride film as masking layer. Fabricated microstructure consists of four $16{\mu}m$ thick flexural spring beams, $290{\mu}m$ thick proof mass, mesas for overrange stop with $10{\mu}m$ height from the surface of the proof mass, and the other mesas and V grooves used for assembling this structure to the packaging frame of pendulous servo accelerometer. Using the numerical finite element method (FEM) simulator: ABAQUS, mechanical characteristics of the fabricated microstructure by the developed technique was compared with those of the same structure processed by one step silicon bulk etch followed by oxidation and patterning the etched region.

  • PDF