• Title/Summary/Keyword: silicon nanoparticles

Search Result 109, Processing Time 0.029 seconds

Improved Antireflection Property of Si by Au Nanoparticle-Assisted Electrochemical Etching (금 나노입자 촉매를 이용한 단결정 실리콘의 전기화학적 식각을 통한 무반사 특성 개선)

  • Ko, Yeong-Hwan;Joo, Dong-Hyuk;Yu, Jae-Su
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.2
    • /
    • pp.99-105
    • /
    • 2012
  • We fabricated the textured silicon (Si) surface on Si substrates by the electrochemical etching using gold (Au) nanoparticle catalysts. The antireflective property of the fabricated Si nanostructures was improved. The Au nanoparticles of ~20-150 nm were formed by the rapid thermal annealing using thermally evaporated Au films on Si. In the chemical etching, the aqueous solution containing $H_2O_2$ and HF was used. In order to investigate the effect of electrochemical etching on the etching depth and reflectance characteristics, the sample was immersed in the aqueous etching solution for 1 min with and without applied cathodic voltages of -1 V and -2 V. As a result, the solar weighted reflectance, i.e., the averaged reflectance with considering solar spectrum (air mass 1.5), could be efficiently reduced for the electrochemically etched Si by applying the cathodic voltage of -2 V, which is expected to be useful for Si solar cell applications.

Nano-Floating Gate Memory Devices with Metal-Oxide Nanoparticles in Polyimide Dielectrics

  • Kim, Eun-Kyu;Lee, Dong-Uk;Kim, Seon-Pil;Lee, Tae-Hee;Koo, Hyun-Mo;Shin, Jin-Wook;Cho, Won-Ju;Kim, Young-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.1
    • /
    • pp.21-26
    • /
    • 2008
  • We fabricated nano-particles of ZnO, $In_2O_3$ and $SnO_2$ by using the chemical reaction between metal thin films and polyamic acid. The average size and density of these ZnO, $In_2O_3$ and $SnO_2$ nano-particles was approximately 10, 7, and 15 nm, and $2{\times}10^{11},\;6{\times}10^{11},\;2.4{\times}10^{11}cm^{-2}$, respectively. Then, we fabricated nano-floating gate memory (NFGM) devices with ZnO and $In_2O_3$ nano-particles embedded in the devices' polyimide dielectrics and silicon dioxide layers as control and tunnel oxides, respectively. We measured the current-voltage characteristics, endurance properties and retention times of the memory devices using a semiconductor parameter analyzer. In the $In_2O_3$ NFGM, the threshold voltage shift (${\Delta}V_T$) was approximately 5 V at the initial state of programming and erasing operations. However, the memory window rapidly decreased after 1000 s from 5 to 1.5 V. The ${\Delta}V_T$ of the NFGM containing ZnO was approximately 2 V at the initial state, but the memory window decreased after 1000 s from 2 to 0.4 V. These results mean that metal-oxide nano-particles have feasibility to apply NFGM devices.

Interfacial Layer Control in DSSC

  • Lee, Wan-In
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.75-75
    • /
    • 2011
  • Recently, dye-sensitized solar cell (DSSC) attracts great attention as a promising alternative to conventional silicon solar cells. One of the key components for the DSSC would be the nanocrystalline TiO2 electrode, and the control of interface between TiO2 and TCO is a highly important issue in improving the photovoltaic conversion efficiency. In this work, we applied various interfacial layers, and analyzed their effect in enhancing photovoltaic properties. In overall, introduction of interfacial layers increased both the Voc and Jsc, since the back-reaction of electrons from TCO to electrolyte could be blocked. First, several metal oxides with different band gaps and positions were employed as interfacial layer. SnO2, TiO2, and ZrO2 nanoparticles in the size of 3-5 nm have been synthesized. Among them, the interfacial layer of SnO2, which has lower flat-band potential than that of TiO2, exhibited the best performance in increasing the photovoltaic efficiency of DSSC. Second, long-range ordered cubic mesoporous TiO2 films, prepared by using triblock copolymer-templated sol-gel method via evaporation-induced self-assembly (EISA) process, were utilized as an interfacial layer. Mesoporous TiO2 films seem to be one of the best interfacial layers, due to their additional effect, improving the adhesion to TCO and showing an anti-reflective effect. Third, we handled the issues related to the optimum thickness of interfacial layers. It was also found that in fabricating DSSC at low temperature, the role of interfacial layer turned out to be a lot more important. The self-assembled interfacial layer fabricated at room temperature leads to the efficient transport of photo-injected electrons from TiO2 to TCO, as well as blocking the back-reaction from TCO to I3-. As a result, fill factor (FF) was remarkably increased, as well as increase in Voc and Jsc.

  • PDF

Synthesis of Core/Shell Graphene/Semiconductor Nanostructures for Lithium Ion Battery Anodes

  • Sin, Yong-Seung;Jang, Hyeon-Sik;Im, Jae-Yeong;Im, Se-Yun;Lee, Jong-Un;Lee, Jae-Hyeon;Wang, Junyi;Heo, Geun;Kim, Tae-Geun;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.288-288
    • /
    • 2013
  • Lithium-ion battery (LIB) is one of the most important rechargeable battery and portable energy storage for the electric digital devices. In particular, study about the higher energy capacity and longer cycle life is intensively studied because of applications in mobile electronics and electric vehicles. Generally, the LIB's capacity can be improved by replacing anode materials with high capacitance. The graphite, common anode materials, has a good cyclability but shows limitations of capacity (~374 mAh/g). On the contrary, silicon (Si) and germanium(Ge), which is same group elements, are promising candidate for high-performance LIB electrodes because it has a higher theoretical specific capacity. (Si:4200 mAh/g, Ge:1600 mAh/g) However, it is well known that Si volume change by 400% upon full lithiation (lithium insertion into Si), which result in a mechanical pulverization and poor capacity retention during cycling. Therefore, variety of nanostructure group IV elements, including nanoparticles, nanowires, and hollow nanospheres, can be promising solution about the critical issues associated with the large volume change. However, the fundamental research about correlation between the composition and structure for LIB anode is not studied yet. Herein, we successfully synthesized various structure of nanowire such as Si-Ge, Ge-Carbon and Si-graphene core-shell types and analyzed the properties of LIB. Nanowires (NWs) were grown on stainless steel substrates using Au catalyst via VLS (Vapor Liquid Solid) mechanism. And, core-shell NWs were grown by VS (Vapor-Solid) process on the surface of NWs. In order to characterize it, we used FE-SEM, HR-TEM, and Raman spectroscopy. We measured battery property of various nanostructures for checking the capacity and cyclability by cell-tester.

  • PDF

Improvement of Fast-Growing Wood Species Characteristics by MEG and Nano SiO2 Impregnation

  • DIRNA, Fitria Cita;RAHAYU, Istie;ZAINI, Lukmanul Hakim;DARMAWAN, Wayan;PRIHATINI, Esti
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.41-49
    • /
    • 2020
  • Jabon (Anthocephalus cadamba) is a fast-growing wood species that is widely utilized for light construction and other purposes in Indonesia. The objectives of the current study were to determine the effects of monoethylene glycol (MEG) and SiO2 nanoparticles (nano SiO2) impregnation treatment on the dimensional stability and density of jabon wood and to identify the characteristics of impregnated jabon wood. Wood samples were immersed in water (as untreated), MEG, 0.5% MEGSiO2, then impregnated by applying 0.5 bar of vacuum for 60 min, and then applying 2.5 bar of pressure for 120 min. The results showed that impregnation with MEG and Nano SiO2 had a significant effect on the dimensional stability of jabon wood. Polymers can fill cell walls in wood indicated by increasing weight percentgain, antiswelling efficiency, bulking effect, and density, then decreasing in water uptake value. Jabon wood morphology by using SEM showed that MEGSiO2 polymers can cover part of the pitsin the wood vessel wall of jabon. This finding was reinforced by EDX results showing that the silicon content was increased due to the addition of SiO2 nano. The XRD diffraction pattern indicated that MEGSiO2 treatment increased the degree of crystallinity in wood samples. Overall, treatment with 0.5% MEGSiO2 led to the most improvement in the dimensional stability of 5-year-old jabon wood in this study.

Enhancement of Photoluminescence by Ag Localized Surface Plasmon Resonance for Ultraviolet Detection

  • Lyu, Yanlei;Ruan, Jun;Zhao, Mingwei;Hong, Ruijin;Lin, Hui;Zhang, Dawei;Tao, Chunxian
    • Current Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • For higher sensitivity in ultraviolet (UV) and even vacuum ultraviolet (VUV) detection of silicon-based sensors, a sandwich-structured film sensor based on Ag Localized Surface Plasmon Resonance (LSPR) was designed and fabricated. This film sensor was composed of a Ag nanoparticles (NPs) layer, SiO2 buffer and fluorescence layer by physical vapour deposition and thermal annealing. By tuning the annealing temperature and adding the SiO2 layer, the resonance absorption wavelength of Ag NPs matched with the emission wavelength of the fluorescence layer. Due to the strong plasmon resonance coupling and electromagnetic field formed on the surface of Ag NPs, the radiative recombination rate of the luminescent materials and the number of fluorescent molecules in the excited state increased. Therefore, the fluorescent emission intensity of the sandwich-structured film sensor was 1.10-1.58 times at 120-200 nm and 2.17-2.93 times at 240-360 nm that of the single-layer film sensor. A feasible method is provided for improving the detection performance of UV and VUV detectors.

Characteristics of Carbon-Doped Mo Thin Films for the Application in Organic Thin Film Transistor (유기박막트랜지스터 응용을 위한 탄소가 도핑된 몰리브덴 박막의 특성)

  • Dong Hyun Kim;Yong Seob Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.588-593
    • /
    • 2023
  • The advantage of OTFT technology is that large-area circuits can be manufactured on flexible substrates using a low-cost solution process such as inkjet printing. Compared to silicon-based inorganic semiconductor processes, the process temperature is lower and the process time is shorter, so it can be widely applied to fields that do not require high electron mobility. Materials that have utility as electrode materials include carbon that can be solution-processed, transparent carbon thin films, and metallic nanoparticles, etc. are being studied. Recently, a technology has been developed to facilitate charge injection by coating the surface of the Al electrode with solution-processable titanium oxide (TiOx), which can greatly improve the performance of OTFT. In order to commercialize OTFT technology, an appropriate method is to use a complementary circuit with excellent reliability and stability. For this, insulators and channel semiconductors using organic materials must have stability in the air. In this study, carbon-doped Mo (MoC) thin films were fabricated with different graphite target power densities via unbalanced magnetron sputtering (UBM). The influence of graphite target power density on the structural, surface area, physical, and electrical properties of MoC films was investigated. MoC thin films deposited by the unbalanced magnetron sputtering method exhibited a smooth and uniform surface. However, as the graphite target power density increased, the rms surface roughness of the MoC film increased, and the hardness and elastic modulus of the MoC thin film increased. Additionally, as the graphite target power density increased, the resistivity value of the MoC film increased. In the performance of an organic thin film transistor using a MoC gate electrode, the carrier mobility, threshold voltage, and drain current on/off ratio (Ion/Ioff) showed 0.15 cm2/V·s, -5.6 V, and 7.5×104, respectively.

Investigation of direct growth behavior of carbon nanotubes on cathode powder materials in lithium-ion batteries (리튬이차전지 양극 분말 소재 위 탄소나노튜브의 직접 성장 거동 고찰)

  • Hyun-Ho Han;Jong-Hwan Lee;Goo-Hwan Jeong
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.1
    • /
    • pp.22-30
    • /
    • 2024
  • This study reports a direct growth of carbon nanotubes (CNTs) on the surface of LiCoO2 (LCO) powders to apply as highly efficient cathode materials in lithium-ion batteries (LIB). The CNT synthesis was performed using a thermal chemical vapor deposition apparatus with temperatures from 575 to 625 ℃. Ferritin molecules as growth catalyst of CNTs were mixed in deionized (DI) water with various concentrations from 0.05 to 1.0 mg/mL. Then, the LCO powders was dissolved in the ferritin solution at a ratio of 1g/mL. To obtain catalytic iron nanoparticles on the LCO surface, the LCO-ferritin suspension was dropped in silicon dioxide substrates and calcined under air at 550℃. Subsequently, the direct growth of CNTs on LCO powders was performed using a mixture of acetylene (10 sccm) and hydrogen (100 sccm) for 10 min. The growth behavior was characterized by scanning and transmission electron microscopy, Raman scattering spectroscopy, X-ray diffraction, and thermogravimetric analysis. The optimized condition yielding high structural quality and amount of CNTs was 600 ℃ and 0.5 mg/mL. The obtained materials will be developed as cathode materials in LIB.

Polymerization of Hydrosilanes and Vinyl Monomers in the Presence of Transition Metal Complex

  • Kim, Myoung-Hee;Lee, Jun;Cha, Hyo Chang;Shin, Joong-Hyeok;Woo, Hee-Gweon
    • Journal of Integrative Natural Science
    • /
    • v.2 no.1
    • /
    • pp.18-23
    • /
    • 2009
  • This minireview provides the chosen examples of our recent discoveries in the polymerization of hydrosilanes, dihydrosilole, lactones, and vinyl derivatives using various catalysts. Hydrosilanes and lactones copolymerize to give poly(lactone-co-silane)s with $Cp_2MCl_2$/Red-Al (M = Ti, Zr, Hf) catalyst. Hydrosilanes (including dihydrosilole) reduce noble metal complexes (e.g., $AgNO_3$, $Ag_2SO_4$, $HAuCl_4$, $H_2PtCl_6$) to give nanoparticles along with silicon polymers such as polysilanes, polysilole, polysiloxanes (and silicas) depending on the reaction conditions. Interestingly, phenylsilane dehydrocoupled to polyphenylsilane in the inert nitrogen atmosphere while phenylsilane dehydrocoupled to silica in the ambient air atmosphere. $Cp_2M/CX_4$ (M = Fe, Co, Ni; X = Cl, Br, I) combination initiate the polymerization of vinyl monomers. In the photopolymerization of vinyl monomers using $Cp_2M/CCl_4$ (M = Fe, Co, Ni), the photopolymerization of MMA initiated by $Cp_2M/CCl_4$ (M = Fe, Co, Ni) shows while the polymerization yield decreases in the order $Cp_2Fe$ > $Cp_2Ni$ > $Cp_2Co$, the molecular weight decreases in the order $Cp_2Co$ > $Cp_2Ni$ > $Cp_2Fe$. For the photohomopolymerization and photocopolymerization of MA and AA, the similar trends were observed. The photopolymerizations are not living. Many exciting possibilities remain to be examined and some of them are demonstrated in the body of the minireview.

  • PDF