• Title/Summary/Keyword: silicon electrode

Search Result 396, Processing Time 0.025 seconds

Extracting Photosynthetic Electrons from Thylakoids on Micro Pillar Electrode

  • Ryu, DongHyun;Kim, Yong Jae;Ryu, WonHyoung
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.631-636
    • /
    • 2018
  • Extraction of photosynthetic currents from thylakoids was studied using micro pillar structured electrode. Thylakoids were isolated from spinach leaves, and the size and shape of thylakoids were estimated from scanning electron microscopy images. Based on the geometry information of thylakoids, micro pillar shaped electrode was designed and fabricated using metal-assisted chemical etching of silicon wafers. Influence of photovoltaic effect on the silicon-based micro pillar electrode was confirmed to be negligible. Photosynthetic currents were measured in a three-electrode setup with an electron mediator, potassium ferricyanide. Photosynthetic currents from micro pillar electrodes were enhanced compared with the currents from flat electrodes. This indicates the significance of the enhanced contact between thylakoids and an electrode for harvesting photosynthetic electrons.

Formation of Copper Electroplated Electrode Patterning Using Screen Printing for Silicon Solar Cell Transparent Electrode (실리콘 태양전지 투명전극용 스크린 프린팅을 이용한 구리 도금 전극 패터닝 형성)

  • Kim, Gyeong Min;Cho, Young Joon;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.228-232
    • /
    • 2019
  • Copper electroplating and electrode patterning using a screen printer are applied instead of lithography for heterostructure with intrinsic thin layer(HIT) silicon solar cells. Samples are patterned on an indium tin oxide(ITO) layer using polymer resist printing. After polymer resist patterning, a Ni seed layer is deposited by sputtering. A Cu electrode is electroplated in a Cu bath consisting of $Cu_2SO_4$ and $H_2SO_4$ at a current density of $10mA/cm^2$. Copper electroplating electrodes using a screen printer are successfully implemented to a line width of about $80{\mu}m$. The contact resistance of the copper electrode is $0.89m{\Omega}{\cdot}cm^2$, measured using the transmission line method(TLM), and the sheet resistance of the copper electrode and ITO are $1{\Omega}/{\square}$ and $40{\Omega}/{\square}$, respectively. In this paper, a screen printer is used to form a solar cell electrode pattern, and a copper electrode is formed by electroplating instead of using a silver electrode to fabricate an efficient solar cell electrode at low cost.

Influence of the process conditions for the amorphous silicon on the HSG-Si formation (비정질 규소막의 공정조건이 HSG-Si 형성에 미치는 영향)

  • Jeong, Jae-Young;Kang, Seong-Jun;Joung, Yang-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.11
    • /
    • pp.1251-1256
    • /
    • 2015
  • In this paper, the processing conditions of the amorphous silicon film growth were investigated the effect in forming the HSG-Si on the surface of the storage electrode. As a result, when the amorphous silicon film phosphorus concentration is greater than $5.5{\pm}0.1E19atoms/cm^3$, HSG-Si is not formed correctly and showed the concentration dependency of HSG formation. Also, the optimum condition of the phosphorus concentration for amorphous silicon and HSG thickness are $4.5E19atoms/cm^3$ and $450{\AA}$, respectively, because of the HSG thickness over the $500{\AA}$ create to bit failure according to a short of the electrodes and the electrode.

Effect of Electrode Formation Process using E-beam Evaporation on Crystalline Silicon Solar Cell (E-Beam evaporation을 이용한 전극 형성 공정이 결정질 실리콘 태양전지에 미치는 영향 분석)

  • Choi, Dongjin;Park, Se Jin;Shin, Seung Hyun;Lee, Changhyun;Bae, Soohyun;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.7 no.1
    • /
    • pp.15-20
    • /
    • 2019
  • Most high-efficiency n-type silicon solar cells are based on the high quality surface passivation and ohmic contact between the emitter and the metal. Currently, various metalization methods such as screen printing using metal paste and physical vapor deposition are being used in forming electrodes of n-type silicon solar cell. In this paper, we analyzed the degradation factors induced by the front electrode formation process using e-beam evaporation of double passivation structure of p-type emitter and $Al_2O_3/SiN_x$ for high efficiency solar cell using n-type bulk silicon. In order to confirm the cause of the degradation, the passivation characteristics of each electrode region were determined through a quasi-steady-state photo-conductance (QSSPC).

Melting Point of Amorphous Copper Phase on Crystalline Silicon Solar Cells During Cold Spray using Molecular Dynamics Calculations (분자 동역학 계산을 통한 결정질 실리콘 태양전지 기판에 콜드 스프레이 전극 형성 시 발생되는 비정질 구리상에 대한 용융 온도 변화 연구)

  • Kim, Soo Min;Kang, Byungjun;Jeong, Sujeong;Kang, Yoonmook;Lee, Hae-seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.3 no.2
    • /
    • pp.61-64
    • /
    • 2015
  • In solar industry, numerous researchers reported about cold spray method among various electrode formation technic, but there are no known a bonding mechanism of metal powder. In this study, a cross-section of copper electrode formed by cold spray method was observed and heterogeneous phase between silicon substrate and copper electrode was analyzed using morphology observation technic. SEM and TEM analysis were performed to analyze a crystallinity and distribution shape of heterogeneous copper phase. Molecular dynamics simulation was performed to calculate glass transition temperature of copper metal. In the result, amorphous copper phase was observed near interface between silicon substrate and metal electrode. The results of the molecular dynamics simulation show that an amorphous copper phase could be formed at a temperature below the melting point of copper because cold spraying resulted in a lower glass transition temperature.

Impacts of Dopant Activation Anneal on Characteristics of Gate Electrode and Thin Gate Oxide of MOS Capacitor (불순물 활성화 열처리가 MOS 캐패시터의 게이트 전극과 산화막의 특성에 미치는 효과)

  • 조원주;김응수
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.10
    • /
    • pp.83-90
    • /
    • 1998
  • The effects of dopant activation anneal on GOI (Gate Oxide Integrity) of MOS capacitor with amorphous silicon gate electrode were investigated. It was found that the amorphous silicon gate electrode was crystallized and the dopant atoms were sufficiently activated by activation anneal. The mechanical stress of gate electrode that reveals large compressive stress in amorphous state, was released with increase of anneal temperature from $700^{\circ}C$ to 90$0^{\circ}C$. The resistivity of gate electrode polycrystalline silicon film is decreased by the increase of anneal temperature. The reliability of thin gate oxide and interface properties between oxide and silicon substrate greatly depends on the activation anneal temperature. The charge trapping characteristics as well as oxide reliability are improved by the anneal of 90$0^{\circ}C$ compare to that of $700^{\circ}C$ or 80$0^{\circ}C$. Especially, the lifetimes of the thin gate oxide estimated by TDDB method is 3$\times$10$^{10}$ for the case of $700^{\circ}C$ anneal, is significantly increased to 2$\times$10$^{12}$ for the case of 90$0^{\circ}C$ anneal. Finally, the interface trap density is reduced with relaxation of mechanical stress of gate electrode.

  • PDF

Improved electrode pattern design for lateral force increase in electrostatic levitation system

  • Woo, Shao-Ju;Jeon, Jong-Up;higuchi, Toshiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.311-314
    • /
    • 1996
  • In contactless disk handling systems based on electrostatic suspension in which the stator is to be transferred, the limited stiffness in lateral direction severely restricts the achievable translational acceleration. In existing stator electrode pattern designs, the magnitude of the lateral force is determined by the magnitude of the control voltages which are applied to the individual electrodes to levitate the disk stably. As a result, the lateral force cannot be set arbitrarily. A new stator electrode pattern is presented for the electrostatic levitation of disk-shaped objects, in particular silicon wafers and aluminum hard disks, which allows the lateral forces to be controlled independently from the levitation voltages. Therefore, greater lateral forces can be obtained, compared with the existing stator designs. Experimental results will be presented for a 4-inch silicon wafer that clearly reveal the increased lateral stiffness by using the proposed stator electrode compared to the conventional electrode pattern.

  • PDF

Effect of defects on lifetime of silicon electrodes and rings in plasma etcher (플라즈마 에쳐용 실리콘 전극과 링의 수명에 미치는 결함의 영향)

  • Eum, Jung-Hyun;Chae, Jung-Min;Pee, Jae-Hwan;Lee, Sung-Min;Choi, Kyoon;Kim, Sang-Jin;Hong, Tae-Sik;Hwang, Choong-Ho;Ahn, Hak-Joon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.2
    • /
    • pp.101-105
    • /
    • 2010
  • Silicon electrode and ring in a plasma etcher those are in contact with harsh plasma suffer from periodic heating and cooling during their lifetime. This causes the silicon components failure due to thermal stress remaining the persistent slip bands (PSBs) on their surfaces. The factors that determine the lifetime of silicon electrode and ring were discussed with respect to silicon ingot. The impurity level and the average defect concentration measured with glow discharge mass spectrometer (GDMS) and microwave photo-conductance decay (${\mu}$-PCD) were compared with the grade of silicon ingots those are divided to slip-free and slip-allowed ingot. Some silp-allowed samples showed planar defects along <110> direction on {001} surface. The role of these defects was suggested from the viewpoint of the lifetime of silicon components.

Improvement of Bonding Strength Uniformity in Silicon-on-glass Process by Anchor Design (Silicon-on-glass 공정에서 접합력 균일도 향상을 위한 고정단 설계)

  • Park, Usung;An, Jun Eon;Yoon, Sungjin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.423-427
    • /
    • 2017
  • In this paper, an anchor design that improves bonding strength uniformity in the silicon-on-glass (SOG) process is presented. The SOG process is widely used in conjunction with electrode-patterned glass substrates as a standard fabrication process for forming high-aspect-ratio movable silicon microstructures in various types of sensors, including inertial and resonant sensors. In the proposed anchor design, a trench separates the silicon-bonded area and the electrode contact area to prevent irregular bonding caused by the protrusion of the electrode layer beyond the glass surface. This technique can be conveniently adopted to almost all devices fabricated by the SOG process without the necessity of additional processes.

Characteristics of Mono Crystalline Silicon Solar Cell for Rear Electrode with Aluminum and Aluminum-Boron (Aluminum 및 Aluminum-Boron후면 전극에 따른 단결정 실리콘 태양전지 특성)

  • Hong, Ji-Hwa;Baek, Tae-Hyeon;Kim, Jin-Kuk;Choi, Sung-Jin;Kim, Nam-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong;Song, Hee-Eun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.34-39
    • /
    • 2011
  • Screen printing method is a common way to fabricate the crystalline silicon solar cell with low-cost and high-efficiency. The screen printing metallization use silver paste and aluminum paste for front and rear contact, respectively. Especially the rear contact between aluminum and silicon is important to form the back surface filed (Al-BSF) after firing process. BSF plays an important role to reduces the surface recombination due to $p^+$ doping of back surface. However, Al electrode on back surface leads to bow occurring by differences in coefficient of thermal expansion of the aluminum and silicon. In this paper, we studied the properties of mono crystalline silicon solar cell for rear electrode with aluminum and aluminum-boron in order to characterize bow and BSF of each paste. The 156*156 $m^2$ p-type silicon wafers with $200{\mu}m$ thickness and 0.5-3 ${\Omega}\;cm$ resistivity were used after texturing, diffusion, and antireflection coating. The characteristics of solar cells was obtained by measuring vernier callipers, scanning electron microscope and light current-voltage. Solar cells with aluminum paste on the back surface were achieved with $V_{OC}$ = 0.618V, JSC = 35.49$mA/cm^2$, FF(Fill factor) = 78%, Efficiency = 17.13%.

  • PDF