DOI QR코드

DOI QR Code

Improvement of Bonding Strength Uniformity in Silicon-on-glass Process by Anchor Design

Silicon-on-glass 공정에서 접합력 균일도 향상을 위한 고정단 설계

  • Park, Usung (The 3rd(SR) R&D Institute - 4, Agency for Defense Development (ADD)) ;
  • An, Jun Eon (The 3rd(SR) R&D Institute - 4, Agency for Defense Development (ADD)) ;
  • Yoon, Sungjin (The 3rd(SR) R&D Institute - 4, Agency for Defense Development (ADD))
  • 박우성 (국방과학연구소 제3기술연구본부 4부) ;
  • 안준은 (국방과학연구소 제3기술연구본부 4부) ;
  • 윤성진 (국방과학연구소 제3기술연구본부 4부)
  • Received : 2017.01.24
  • Accepted : 2017.03.21
  • Published : 2017.06.01

Abstract

In this paper, an anchor design that improves bonding strength uniformity in the silicon-on-glass (SOG) process is presented. The SOG process is widely used in conjunction with electrode-patterned glass substrates as a standard fabrication process for forming high-aspect-ratio movable silicon microstructures in various types of sensors, including inertial and resonant sensors. In the proposed anchor design, a trench separates the silicon-bonded area and the electrode contact area to prevent irregular bonding caused by the protrusion of the electrode layer beyond the glass surface. This technique can be conveniently adopted to almost all devices fabricated by the SOG process without the necessity of additional processes.

본 논문은 silicon-on-glass(SOG) 공정에서 접합력 균일도 향상을 위한 고정단 설계에 대한 내용을 다룬다. SOG 공정은 전극이 형성된 유리 기판층과 실리콘 구조층의 양극접합을 기반으로 하며, 가속도 센서와 공진형 센서를 비롯한 고종횡비 구조를 갖는 다양한 실리콘 센서들의 제작에 널리 사용된다. 본 논문에서는 전극과 유리 기판층의 표면 사이에 발생하는 단차로 인한 불균일한 접합을 방지하기 위해, 실리콘 구조층에서 유리 기판층과 접합되는 부분과 전극과 겹쳐지는 부분을 트렌치(trench)를 이용해 분리하는 새로운 형상의 고정단을 제안한다. 본 고정단은 추가적인 공정 없이 기존의 SOG 공정으로 제작되는 디바이스들에 손쉽게 적용이 가능하다.

Keywords

References

  1. Yazid, N., Ayazi, F. and Najafi, K., 1998, "Micromachined Inertial Sensors," Proc. IEEE, Vol. 86, pp. 1640-1659. https://doi.org/10.1109/5.704269
  2. Gianchandani, Y. and Najafi, K., 1992, "A Bulk Silicon Dissolved Wafer Process for Microelectromechanical Devices," J. Microelectromech. Syst., Vol. 1, pp. 77-85. https://doi.org/10.1109/84.157361
  3. Borenstein, J. T., Gerrish, N. D., White, R., Currie, M. T. and Fitzgerald, E. A., 2000, "Silicon Germanium Epitaxy: a New Material for MEMS," Mater. Res. Soc. Symp. 657 7.4.1.
  4. Tez, S. and Akin, T., 2012, "Comparison of Two Alternative Fabrication Processes for a Three-Axis Capacitive MEMS Accelerometer," Procedia Engineering, Vol. 47, pp. 342-345. https://doi.org/10.1016/j.proeng.2012.09.153
  5. Sawyer, W. D., Prince, M. S. and Brown, G. J., 2005, "SOI Bonded Wafer Process for High Precision MEMS Inertial Sensors," J. Micromech. Microeng, Vol. 15, pp. 1588-1593. https://doi.org/10.1088/0960-1317/15/8/030
  6. Cabuz, C. and Ridley, J. A., 2003, SOI/Glass Process for Forming Thin Silicon Micromachined Structures, US Patent, US 6,582,985 B2.
  7. Chen, S., Chien, H. T., Lin, J. Y. and Hsu, Y. W., 2008, "A Method for Fabricating MEMS Accelerometers," Electronic Materials and Packaging, pp. 84-87.
  8. Alper, S. E., Temiz, Y. and Akin, T., 2008, "A Compact Angular Rate Sensor System using a Fully Decoupled Silicon-on-glass MEMS Gyroscope," J. Microelectromechanical Syst, Vol. 17, pp. 1418- 1429. https://doi.org/10.1109/JMEMS.2008.2007274
  9. Ding, H., Liu, X., Lin, L., Chi, X., Cui, J., Kraft, M., Yang, Z. and Yan, G., 2010, "A High-Resolution Silicon-on-glass z-Axis Gyroscope Operating at Atmospheric Pressure," IEEE Sens. J, Vol. 10, pp. 1066-1074. https://doi.org/10.1109/JSEN.2010.2043669
  10. Torunbalci, M. M., Tatar, E., Alper, S. E. and Akin, T., 2011, "Comparison of Two Alternative Silicon-onglass Microfabrication Processes for MEMS Inertial Sensors," Proc. Eurosensors XXV, pp. 900-903.
  11. Park, U., Rhim, J., Jeon, J. U. and Kim, J., 2014, "A Micromachined Differential Resonant Accelerometer Based on Robust Structural Design," Microelectronic Eng., Vol. 129, pp. 5-11. https://doi.org/10.1016/j.mee.2014.06.008