• Title/Summary/Keyword: silicon diode

Search Result 232, Processing Time 0.029 seconds

Laser Microfabrication for Silicon Restrictor

  • Kim, Kwang-Ryul;Jeong, Young-Keun
    • Journal of Powder Materials
    • /
    • v.15 no.1
    • /
    • pp.46-52
    • /
    • 2008
  • The restrictor, which is a fluid channel from a reservoir to a chamber inside a thermal micro actuator, has been fabricated using ArF and KrF excimer lasers, Diode-Pumped Solid State Lasers (DPSSL) and femtosecond lasers for a feasibility study. A numerical model of fluid dynamics for the actuator chamber and restrictor is presented. The model includes bubble formation and growth, droplet ejection through nozzle, and dynamics of fluid refill through the restrictor from a reservoir. Since an optimized and well-fabricated restrictor is important for a high frequency actuator, some special beam delivery setups and post processing techniques have been researched and developed. The effects of variations of the restrictor length, diameter, and tapered shapes are simulated and the results are analyzed to determine the optimal design. The numerical results of droplet velocity and volume are compared with the experimental results of a cylindrical-shaped actuator. It is found that the micro actuators having tapered restrictors show better high frequency characteristics than those having a cylindrical shape without any notable decrease of droplet volume. The laser-fabricated restrictors demonstrate initial feasibility for the laser direct ablation technique although more development is required.

A compact and low-power consumable device for continuous monitoring of biosignal (소형화 및 저전력소모를 구현한 실시간 생체신호 측정기 개발)

  • Cho, Jung-Hyun;Yoon, Gil-Won
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.334-340
    • /
    • 2006
  • A compact biosignal monitoring device was developed. Electrodes for electrocardiogram (ECG) and a LED and silicon detector for photoplethysmogram (PPG) were used. A lead II type was arranged for ECG measurement and reflected light was measured at the finger tip for PPG. A single chip microprocessor (model ADuC812, Analog Device) controlled a measurement protocol and processed measured signals. PPG and ECG had a sampling rate of 300 Hz with 8-bit resolution. The maximum power consumption was 100 mW. The microprocessor computed pulse transit time (PTT) between the R-wave of ECG and the peak of PPG. To increase the resolution of PTT, analog peak detectors obtained the peaks of ECG and PPG whose interval was calculated using an internal clock cycle of 921.6 kHz. The device was designed to be operated by 3-volt battery. Biosignals can be measured for $2{\sim}3$ days continuously without the external interruptions and data is stored to an on-board memory. Our system was successfully tested with human subjects.

Characteristics of MINOS Structure using $TiO_2$ as Blocking Layer for Nonvolatile Memory applicable to OLED

  • Lee, Kwang-Soo;Jung, Sung-Wook;Kim, Kyung-Hae;Jang, Kyung-Soo;Hwang, Sung-Hyun;Lee, Jeoung-In;Park, Hyung-Jun;Kim, Jae-Hong;Son, Hyuk-Joo;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1284-1287
    • /
    • 2007
  • Titanium dioxide ($TiO_2$) is promising candidate for fabricating blocking layer of gate dielectrics in non-volatile memory (NVM). In this work, we investigated $TiO_2$ as high dielectric constant material instead of silicon dioxide ($SiO_2$), which is generally used as blocking layer for NVM.

  • PDF

High Voltage Ti/4H-SiC Schottky Rectifiers (고전압 Ti/4H-SiC 쇼트키 장벽 다이오드 제작 및 특성분석)

  • Kim, C.K.;Yang, S.J.;Lee, J.H.;Noh, I.H.;Cho, N.I.;Kim, N.K.;Kim, E.D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.834-838
    • /
    • 2002
  • In this paper, we have fabricated 4H-SiC schottky diodes utilizing a metal-oxide overlap structure for electric filed termination. The barrier height and Ideality factor were measured by current-voltage, capacitance-voltage characteristics. Schottky barrier height(SBH) were 1.41ev for Ni and 1.35eV for Pt, 1.52eV for Pt/Ti at room temperature and Pt/Ti Schottky diode exhibited Ideality factor was 1.06 to 1.4 in the range of $25^{\circ}C{\sim}200^{\circ}C$. To improve the reverse bias characteristics, an edge termination technique is employed for Pt/Ti/4H-SiC Schottky rectifiers and the device show excellent characteristics with higher blocking voltage up to 780V compared with unterminated devices.

  • PDF

Characteristics of Defects in SiOx Thin films on Ethylene Terephthalate by High-temperature E-beam Deposition (고온 전자빔 증착에 의한 Ethylene Terephthalate상의 SiOx 박막의 특성 평가)

  • Han Jin-Woo;Kim Young-Hwan;Kim Jong-Hwan;Seo Dae-Shlk;Moon Dae-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.1
    • /
    • pp.71-74
    • /
    • 2006
  • In this paper, we investigated the characterization of silicon oxide(SiOx) thin film on Ethylene Terephthalate(PET) substrates by e-beam deposition for transparent barrier application. The temperature of chamber increases from $30^{\circ}C$ to $110^{\circ}C$, the roughness increase while the Water vapor transmission rate (WVTR) decreases. Under these conditions, the WVTR for PET can be reduced from a level of $0.57 g/m^2/day$ (bare subtrate) to $0.05 g/m^2/day$ after application of a 200-nm-thick $SiO_2$ coating at 110 C. A more efficient way to improve permeation of PET was carried out by using a double side coating of a 5-${\mu}m$-thick parylene film. It was found that the WVTR can be reduced to a level of $-0.2 g/m^2/day$. The double side parylene coating on PET could contribute to the lower stress of oxide film, which greatly improves the WVTR data. These results indicates that the $SiO_2$ /Parylene/PET barrier coatings have high potential for flexible organic light-emitting diode(OLED) applications.

A Study on the Negative Differential Resistance Properties of Self-Assembly Organic Thin Film with Nitro Group (니트로기를 가진 자기조립된 유기 초박막의 부성미분저항 특성에 관한 연구)

  • Kim, Seung-Un;Son, Jung-Ho;Kim, Byoung-Sang;Shin, Hoon-Kyu;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.811-813
    • /
    • 2003
  • We investigated the electrical properties of self-assembled (4,4'-Di(ethynylphenyl)-2'-nitro-1-thioacetylbenzene), which has been well known as a conducting molecule having possible application to molecular level negative differential resistance(NDR)[1]. Generally, the phenomenon of NDR can be characterized by the decreasing current with the increasing voltage[2]. To deposit the SAM layer onto gold electrode, we transfer the prefabricated nanopores into a 1mM self-assembly molecules in THF solution. Au(111) substrates were prepared by ion beam sputtering method of gold onto the silicon wafer. As a result, we measured the voltage-current properties and confirmed the negative differential resistance properties of self-assembled organic thin film and measured, using Scanning Tunneling Microscopy(STM).

  • PDF

The effect of surface texturization on the thermal and electric characteristics of photovoltaic devices (표면 texturizaton에 따른 photovoltaic device의 열적 전기적 특성)

  • Jung, Ji-Chul;Jung, Byung-Eon;Lee, Jung-Ho;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.133-133
    • /
    • 2010
  • We studied the thermal and electric effect of 2D and 3D p-n photovoltaic diode structures with and without surface texturing. By analyzing the numerical simulation results of I-V characteristics and lattice temperature distributions, we systematically studied the effect of different texturing structures and different doping concentration on the characteristics of the silicon p-n photovoltaic devices. The, efficiency of the device with the surface texturing shows more than ~ 2% enhancement compared to the reference devices without texturing. The tendency of the efficiency of doping concentration has been studied with boron doping of $10^{14}{\sim}10^{17}cm^{-3}$ and phosphorus doping of $10^{15}cm^{-3}$. In addition to that, the study of changing phosphorus doping of $10^{15}{\sim}10^{18}cm^{-3}$ with boron doping of $10^{14}cm^{-3}$ has been examined. It has been shown that the texturing structure not only improves the light trapping but also plays an important role in the heat radiation.

  • PDF

Variable speed operation of SRM with dual rating using proper voltage excitation (적정 전압 여자를 적용한 이중 정격 SRM의 가변속 운전)

  • An, Young-Joo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.348-352
    • /
    • 2016
  • This paper addresses the efficient improvement of the Switched Reluctance Motor(SRM) by the proper voltage excitation. In the case of loads with large operational motor-speed differences such as washing machine, an SRM system driven by a constant DC-link voltage is not useful for improving the efficiency. To reduce the effect of the excess DC-link voltage, AC-DC control converter that uses a silicon controlled rectifier instead of diode rectifier is employed in the SRM driver system. AC-DC control converter supplies a proper link voltage for low-speed operation. The experimental results demonstrated that the efficiency of the system was improved at low speeds.

High-Power LED Thermal Spreaders Design Using Pulsating Heat Pipe (진동형 히트파이프를 이용한 고출력 LED 조명 방열 설계)

  • Jang, Jeong-Wan;Kim, Jong-Soo;Ha, Soo-Jung
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1379-1384
    • /
    • 2009
  • High power light emitting diode(LEDs), a strong candidate for the next generation general illumination applications are of interest. With major advantages of power saving, increased life expectancy and faster response time over traditional incandescent bulb, the LEDs are rapidly taking over many applications such as LCD backlighting, traffic light, automotive lighting, signage, etc. The increased electrical currents used to drive the LEDs have focused more attention on the thermal management because the efficiency and reliability of the solid-state lighting devices strongly depend on successful thermal management. There exist some problems that are caused by heat generation in the LED package, such as wire breakage, yellowing of epoxy resin, lifted chip caused by reflow of thermal paste chip attach and interfacial separation between LED package and silicon resin. The goal of this study is to analyze high power LED thermal properties of using pulsating heat pipe.

  • PDF

Effects of Annealing on Solution Processed n-ZTO/p-SiC Heterojunction (용액 공정으로 형성된 n-ZTO/p-SiC 이종접합 열처리 효과)

  • Jeong, Young-Seok;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.8
    • /
    • pp.481-485
    • /
    • 2015
  • We investigated the effects of annealing on the electrical and thermal properties of ZTO/4H-SiC heterojunction diodes. A ZTO thin film layer was grown on p-type 4H-SiC substrate by using solution process. The ZTO/SiC heterojunction structures annealed at $500^{\circ}C$ show that $I_{on}/I_{off}$ increases from ${\sim}5.13{\times}10^7$ to ${\sim}1.11{\times}10^9$ owing to the increased electron concentration of ZTO layer as confirmed by capacitance-voltage characteristics. In addition, the electrical characterization of ZTO/SiC heterojunction has been carried out in the temperature range of 300~500 K. When the measurement temperature increased from 300 K to 500 K, the reverse current variation of annealed device is higher than as-grown device, which is related to barrier height in the ZTO/SiC interface. It is shown that annealing process is possible to control the electrical characteristics of ZTO/SiC heterojunction diode.