• Title/Summary/Keyword: silicon Carbide

Search Result 746, Processing Time 0.026 seconds

AN EXPERIMENTAL STUDY ON SHEAR BOND STRENGTH OF GLASS IONOMER CEMENT TO DENTIN SURFACE FOLLOWING SURFACE CONTIONING (상아질 표면처리가 글라스 아이오노머 시멘트의 결합강도에 미치는 영향에 관한 연구)

  • Lee, Kwang-Woo;Hong, Chan-Ui;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.17 no.1
    • /
    • pp.104-114
    • /
    • 1992
  • The purpose of this study was to evaluate the shear bond strength of glass ionomer cement(Ketacfil, ESPE, Co.) against dentin surface which had been treated with surface conditioning agents(distilled water, 5% sodium hypochlorite solution, Ketac - conditioner, 40% polyacrylic acid). In this study, 60 human molars with sound and healthy crown portion which were previously extracted for orthodontic or periodontal problem. The dentin surfaces of these teeth were exposed with wet trimmer and polished with 150 - grit and 600 - grit silicon carbide paper and the teeth were divided into four groups(15 teeth per group) according to the following surface conditioning methods. Group I : Surface treatment with distilled water as control group. Group II : Surface conditioning with 5% sodium hypochlorite solution. Group III : Surface conditioning with Ketac conditioner. Group IV : Surface conditioning with 40% polyacrylic acid. The shear bond strengths were measured by Autograph(Shimatzu Co. Japan). The result of the evaluations were then subjected to statistical analysis using one - way analysis of variance and Duncan test and the results were as follows : 1. The shear bond strength accrding to the dentin surface conditioning conditions was highest in Ketac conditioner group, with measurements of $44.44{\pm}0.74(kg/cm^2)$ and lowest in the distilled water group, with measurements of $28.84{\pm}0.88(kg/cm^2)$. 2. Statistically significant differences were found between surface conditioning with 5% sodium hypochlorite solution group or Ketac conditioner group and distilled water group(P<0.01). 3. Also, statistically significant difference was found between surface conditioning with distilled water group and 40% polyacrylic acid group(P<0.05). 4. Overall difference in statistical significance between the groups was not found (P<0.05). 5. Fractured dentin surface treated with conditioning solutions showed cohesive fracture. 6. Distilled water group and 5% sodium hypochlorite solution group removed the smear layer less effectively. 7. Conditioning dentin with Ketac conditioner and 40% polyacrylic acid resulted in the removal of a significant amount of the smear layer without removing the tubular plugs and dissolving the peritubular dentin.

  • PDF

Characteristics of Nickel_Titanium Dual-Metal Schottky Contacts Formed by Over-Etching of Field Oxide on Ni/4H-SiC Field Plate Schottky Diode and Improvement of Process (Ni/4H-SiC Field Plate Schottky 다이오드 제작 시 과도 식각에 의해 형성된 Nickel_Titanium 이중 금속 Schottky 접합 특성과 공정 개선 연구)

  • Oh, Myeong-Sook;Lee, Jong-Ho;Kim, Dae-Hwan;Moon, Jeong-Hyun;Yim, Jeong-Hyuk;Lee, Do-Hyun;Kim, Hyeong-Joon
    • Korean Journal of Materials Research
    • /
    • v.19 no.1
    • /
    • pp.28-32
    • /
    • 2009
  • Silicon carbide (SiC) is a promising material for power device applications due to its wide band gap (3.26 eV for 4H-SiC), high critical electric field and excellent thermal conductivity. The Schottky barrier diode is the representative high-power device that is currently available commercially. A field plate edge-terminated 4H-SiC was fabricated using a lift-off process for opening the Schottky contacts. In this case, Ni/Ti dual-metal contacts were unintentionally formed at the edge of the Schottky contacts and resulted in the degradation of the electrical properties of the diodes. The breakdown voltage and Schottky barrier height (SBH, ${\Phi}_B$) was 107 V and 0.67 eV, respectively. To form homogeneous single-metal Ni/4H-SiC Schottky contacts, a deposition and etching method was employed, and the electrical properties of the diodes were improved. The modified SBDs showed enhanced electrical properties, as witnessed by a breakdown voltage of 635 V, a Schottky barrier height of ${\Phi}_B$=1.48 eV, an ideality factor of n=1.04 (close to one), a forward voltage drop of $V_F$=1.6 V, a specific on resistance of $R_{on}=2.1m{\Omega}-cm^2$ and a power loss of $P_L=79.6Wcm^{-2}$.

자화된 $SF_6$ 유도결합형 플라즈마를 이용한 SiC 식각 특성에 관한 연구

  • 이효영;김동우;박병재;염근영
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.14-14
    • /
    • 2003
  • Silicon carbide (SiC)는 높은 power 영역과 높은 온도영역에서도 작동 가능한 우수한 반도체 물질이다. 또한 우수한 열적 화학적, 안정성을 가지고 있어 가흑한 조건에서의 소자로써도 사용 가능하다. 현재 SiC 적용분야로는 우수한 전기적, 기계적 성질을 이용한 미세소자(MEMS)와 GaN 와 거의 유사한 격자상수를 가지는 것을 이용한 GaN epitaxial 성장의 기판으로도 사용되어진다. 그러나 SiC 는 기존의 습식식각 용매에 대해 화학적 안정성을 가지고 있기 때문에 전자소자의 제작에 있어서 플라즈마를 이용한 건식식각의 중요성이 대두되어지고 있다. 소자제작에 있어 이러한 건식식각시 식각 단면의 제어, 이온에 의한 낮은 손상 정도, 매끄러운 식각 표면, 그리고 고속의 식각 속도둥이 요구되어진다. 본 실험에서는 식각 속도의 증가와 수직한 식각 단면둥을 획득하기 위하여 SF6 플라즈마에서 Source power, dc bias voltage, 그리고 외부에서 인가되는 자속의 세기를 변화시쳐가며 식각 속도, 식각 마스크와의 식각 션택비, 식각 단면둥과 같은 SiC 의 식각 특성을 관찰하였다. 식각 후 식각 단면은 주사전자 현미경(SEM)을 통해 관찰하였다. 본 실험에서의 가장 높은 식각 속도는 분당 1850n 로써 이때의 공정조건은 1400W 의 inductive power, -600V 의 dc bias voltage, 20G 의 외부자속 세기이었다. 또한, 높은 inductive power 조건과 낮은 dc bias voltage 조건에서 Cu는 $SF_6$ 플라즈마 내에서 식각부산물의 증착으로 인해 SiC 와 무한대의 식각선택비를 보였다. 이러한 Cu 마스크를 사용한 SiC 의 식각에서는 식각 후 수직한 식각 단변을 관찰할 수 있었다. 것올 알 수 있다. 따라서, 기존의 pve 보다 세라믹 기판의 경우가 수분 흡수율이 높아 더 오랫동안 전류를 흐르게 하여 방식성이 개선된 것으로 판단된다.을 통해 경도가 증가한 시편의 경우 석출상의 크기가 5nm 이하로 매우 작고 대체로 기지와 연속적인 계면을 형성하나, 열처리가 진행될수록 석 출상의 크기가 커지고 임계크기 이상에 이르면 연속적인 계면은 거의 발견되지 않고, 대부 분 불연속적이고 확연한 계면을 형성함을 관찰 할 수 있었다. 알루미나(${\alpha}-Al_2O_3$) 기판 위에 증착한 $(Ti_{1-x}AI_{x})N$ 피막은 마찬가지로 (200) 우선 방위를 나타내었으나, 그 입자의 크기가 수십 nm로 고속도강위에 증착한 피막에 비해 상당히 크게 형성되었다. 또한 열처리 후에 AIN의 석출이 진행됨에도 불구하고 경도 증가는 나타나지 않고, 열처리가 진행됨에 따라 경도가 감소하는 양상만을 나타내었다. 결국 $(Ti_{1-x}AI_{x})N$ 피막이 열처리 전후에 보아는 기계적 특성의 변화 양상은 열역학적으로 안정한 Wurzite-AlN의 석출에 따른 것으로 AlN 석출상의 크기에 의존하며, 또한 이러한 영향은 $(Ti_{1-x}AI_{x})N$ 피막에 존재하는 AI의 함량이 높고, 초기에 증착된 막의 업자 크기가 작을 수록 클 것으로 여겨진다. 그리고 환경의 의미의 차이에 따라 경관의 미학적 평가가 달라진 것으로 나타났다.corner$적 의도에 의한 경관구성의 일면을 확인할수 있지만 엄밀히 생각하여 보면 이러한 예의 경우도 최락의 총체적인 외형은 마찬가지로 $\ulcorner$순응$\lrcorner$의 범위를 벗어나지 않는다. 그렇기 때문에

  • PDF

Thermoelectric Properties of the Reaction Sintered n-type β-SiC (반응소결법으로 제조한 n형 β-SiC의 열전특성)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.29-34
    • /
    • 2019
  • Silicon carbide is considered to be a potentially useful material for high-temperature electronic devices, as its large energy band gap and the p-type and/or n-type conduction can be controlled by impurity doping. Particularly, electric conductivity of porous n-type SiC semiconductors fabricated from ${\beta}-SiC$ powder at $2000^{\circ}C$ in $N_2$ atmosphere was comparable to or even larger than the reported values of SiC single crystals in the temperature region of $800^{\circ}C$ to $1000^{\circ}C$, while thermal conductivity was kept as low as 1/10 to 1/30 of that for a dense SiC ceramics. In this work, for the purpose of decreasing sintering temperature, it was attempted to fabricate porous reaction-sintered bodies at low temperatures ($1400-1600^{\circ}C$) by thermal decomposition of polycarbosilane (PCS) impregnated in n-type ${\beta}-SiC$ powder. The repetition of the impregnation and sintering process ($N_2$ atmosphere, $1600^{\circ}C$, 3h) resulted in only a slight increase in the relative density but in a great improvement in the Seebeck coefficient and electrical conductivity. However the power factor which reflects the thermoelectric conversion efficiency of the present work is 1 to 2 orders of magnitude lower than that of the porous SiC semiconductors fabricated by conventional sintering at high temperature, it can be stated that thermoelectric properties of SiC semiconductors fabricated by the present reaction-sintering process could be further improved by precise control of microstructure and carrier density.

Development of Grinding/Polishing Process for Microstructure Observation of Copper melted Beads (구리 용융흔 미세조직 관측을 위한 연마/미세연마 프로세스 개발)

  • Park, Jin-Young;Bang, Sun-Bae
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.108-116
    • /
    • 2018
  • A melted bead microstructure can be divided into a deformed and undeformed layer. Measurement errors occur in the presence of a deformed layer, which should be removed through grinding/polishing whilst preserving the original structure. This paper proposes a grinding/polishing process to analyze the microstructure of copper melted beads. For the removal of the deformed layer, the correlation between the abrasive type/size, the polishing time and polishing rate was analyzed and the thickness of the deformed layer was less than $1{\mu}m$. The results suggest a new grinding/polishing procedure: silicon carbide abrasive $15{\mu}m$ (SiC P1200) 2 min, and $10{\mu}m$ (SiC P2400) 1 min; and diamond abrasive $6{\mu}m$ 8 min, $3{\mu}m$ 6 min, $1{\mu}m$ 10 min, and $0.25{\mu}m$ 8 min. In addition, a method of increasing the sharpness of the microstructure by chemical polishing with $0.04{\mu}m$ colloidal silica for 3 min at the final stage is also proposed. The overall grinding/polishing time is 38 min, which is shorter than that of the conventional procedure.

Evaluation of Electromagnetic Shielding Performance of SiC and Graphite Mixed Mortar (SiC 및 흑연 혼입 모르타르의 전자파 차폐 성능 평가)

  • Park, Oh-Seong;Cho, Hyeong-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.5
    • /
    • pp.459-468
    • /
    • 2021
  • Blocking electromagnetic waves on the exterior walls of buildings effectively reduces the intensity of electromagnetic fields in buildings, which leads to attenuation of electromagnetic disturbances, so there is a great interest in developing technologies. In this study, SiC by-products and graphite generated in the semiconductor field were selected and mixed into mortar after pretreatment such as pulverization to evaluate their physical properties and electromagnetic wave shielding performance. Considering the economic efficiency of each shielding material, only 10% volume of the outermost side of the experiment was mixed with each shielding material to evaluate the shielding performance. The shielding performance was predicted when the experiment was manufactured by mixing the shielding material with the entire volume of the experiment using the shielding effect evaluation formula. The results of the experiment showed that the shielding performance was up to 20 dB when SiC grains were mixed with shielding materials, the shielding performance was up to 18 dB when graphite powder was mixed with shielding materials, and the shielding performance was up to 28 dB when SiC powder was mixed with shielding materials, and the shielding performance was close to 30 dB, which is known to have a shielding rate of 99.9%.

Study on the characteristics of transition metals for TSSG process of SiC single crystal (SiC 단결정의 TSSG 공정을 위한 전이금속 특성 연구)

  • Lee, Seung-June;Yoo, Yong-Jae;Jeong, Seong-Min;Bae, Si-Young;Lee, Won-Jae;Shin, Yun-Ji
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.2
    • /
    • pp.55-60
    • /
    • 2022
  • In this study, a heat treatment experiment was conducted to select a new melt composition that can easily control the unintentionally doped nitrogen (N-UID) without degrading the SiC single crystal quality during TSSG process. The experiment was carried out for about 2 hours at a temperature of 1900℃ under Ar atmosphere. The used melt composition is based on either Si-Ti 10 at% or Si-Cr 30 at%, and also Co or Sc transition metals, which are effective for carbon solubility, were added at 3 at%, respectively. After the experiment, the crucible was cross-sectionally cut, and evaluated the Si-C reaction layer on the crucible-melt interface. As a result, with Sc addition, Si-C reaction layers uniformly occurred with a Si-infiltrated layer (~550 ㎛) and a SiC interlayer (~23 ㎛). This result represented that the addition of Sc is an effective transition metal with high carbon solubility and can feed carbon sources into the melt homogeneously. In addition, Sc is well known to have low reactivity energy with nitrogen compared to other transition metals. Therefore, we expect that both growth rate and Nitrogen UID can be controlled by Si-Sc based melt in the TSSG process.

Optimization of 1.2 kV 4H-SiC MOSFETs with Vertical Variation Doping Structure (Vertical Variation Doping 구조를 도입한 1.2 kV 4H-SiC MOSFET 최적화)

  • Ye-Jin Kim;Seung-Hyun Park;Tae-Hee Lee;Ji-Soo Choi;Se-Rim Park;Geon-Hee Lee;Jong-Min Oh;Weon Ho Shin;Sang-Mo Koo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.332-336
    • /
    • 2024
  • High-energy bandgap material silicon carbide (SiC) is gaining attention as a next-generation power semiconductor material, and in particular, SiC-based MOSFETs are developed as representative power semiconductors to increase the breakdown voltage (BV) of conventional planar structures. However, as the size of SJ (Super Junction) MOSFET devices decreases and the depth of pillars increases, it becomes challenging to uniformly form the doping concentration of pillars. Therefore, a structure with different doping concentrations segmented within the pillar is being researched. Using Silvaco TCAD simulation, a SJ VVD (vertical variation doping profile) MOSFET with three different doping concentrations in the pillar was studied. Simulations were conducted for the width of the pillar and the doping concentration of N-epi, revealing that as the width of the pillar increases, the depletion region widens, leading to an increase in on-specific resistance (Ron,sp) and breakdown voltage (BV). Additionally, as the doping concentration of N-epi increases, the number of carriers increases, and the depletion region narrows, resulting in a decrease in Ron,sp and BV. The optimized SJ VVD MOSFET exhibits a very high figure of merit (BFOM) of 13,400 KW/cm2, indicating excellent performance characteristics and suggesting its potential as a next-generation highperformance power device suitable for practical applications.

EFFECT OF ULTRASONIC VIBRATION ON ENAMEL AND DENTIN BOND STRENGTH AND RESIN INFILTRATION IN ALL-IN-ONE ADHESIVE SYSTEMS (All-in-one 접착제에서 초음파진동이 법랑질과 상아질의 결합강도와 레진침투에 미치는 영향)

  • Lee, Bum-Eui;Jang, Ki-Taeg;Lee, Sang-Hoon;Kim, Chong-Chul;Hahn, Se-Hyun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.1
    • /
    • pp.66-78
    • /
    • 2004
  • The objective of this study was to apply the vibration technique to reduce the viscosity of bonding adhesives and thereby compare the bond strength and resin penetration in enamel and dentin achieved with those gained using the conventional technique and vibration technique. For enamel specimens, thirty teeth were sectioned mesio-distally. Sectioned two parts were assigned to same adhesive system but different treatment(vibration vs. non-vibration). Each specimen was embedded in 1-inch inner diameter PVC pipe with a acrylic resin. The buccal and lingual surfaces were placed so that the tooth and the embedding medium were at the same level. The samples were subsequently polished silicon carbide abrasive papers. Each adhesive system was applied according to its manufacture's instruction. Vibration groups were additionally vibrated for 15 seconds before curing. For dentin specimen, except removing the coronal part and placing occlusal surface at the mold level, the remaining procedures were same as enamel specimen. Resin composite(Z250. 3M. U.S.A.) was condensed on to the prepared surface in two increments using a mold kit(Ultradent Inc., U.S.A.). Each increments was light cured for 40 seconds. After 24 hours in tap water at room temperature, the specimens were thermocycled for 1000cycles. Shear bond strengths were measured with a universal testing machine(Instron 4465, England). To investigate infiltration patterns of adhesive materials, the surface of specimens was examined with scanning electron microscope. The results were as follows: 1. In enamel the mean values of shear bond strengths in vibration groups(group 2, 4, 6) were greater than those of non-vibration group(group 1, 3, 5). The differences were statistically significant except AQ bond group. 2. In dentin, the mean values of shear bond strengths in vibration groups(group 2, 4, 6) were greater than those of non-vibration groups(group 1, 3, 5). But the differences were not statistically significant except One-Up Bond F group. 3. The vibration group showed more mineral loss in enamel and longer resin tag and greater number of lateral branches in dentin under SEM examination.

  • PDF

In Vitro Evaluation of Shear Bond Strengths of Zirconia Cerami with Various Types of Cement after Thermocycling on Bovine Dentin Surface (지르코니아 표면 처리와 시멘트 종류에 따른 치면과의 전단 결합 강도 비교 연구)

  • Cho, Soo-Hyun;Cho, In-Ho;Lee, Jong-Hyuk;Nam, Ki-Young;Kim, Jong-Bae;Hwang, Sang-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.3
    • /
    • pp.249-257
    • /
    • 2007
  • State of problem : The use of zirconium oxide all-ceramic material provides several advantages, including a high flexural strength(>1000MPa) and desirable optical properties, such as shading adaptation to the basic shades and a reduction in the layer thickness. Along with the strength of the materials, the cementation technique is also important to the clinical success of a restoration. Nevertheless, little information is available on the effect of different surface treatments on the bonding of zirconium high-crystalline ceramics and resin luting agents. Purpose : The aim of this study was to test the effects of surface treatments of zirconium on shear bond strengths between bovine teeth and a zirconia ceramic and evaluate differences among cements Material and methods : 54 sound bovine teeth extracted within a 1 months, were used. They were frozen in distilled water. These were rinsed by tap water to confirm that no granulation tissues have left. These were kept refrigerated at $4^{\circ}C$ until tested. Each tooth was placed horizontally at a plastic cylinder (diameter 20mm), and embedded in epoxy resin. Teeth were sectioned with diamond burs to expose dentin and grinded with #600 silicon carbide paper. To make sure there was no enamel left, each was observed under an optical microscope. 54 prefabricated zirconium oxide ceramic copings(Lava, 3M ESPE, USA) were assigned into 3 groups ; control, airborne-abraded with $110{\mu}m$ $Al_2O_3$ and scratched with diamond burs at 4 directions. They were cemented with a seating force of 10 ㎏ per tooth, using resin luting cement(Panavia $F^{(R)}$), resin cement(Superbond $C&B^{(R)}$), and resin modified GI cement(Rely X $Luting^{(R)}$). Those were thermocycled at $5^{\circ}C$ and $55^{\circ}C$ for 5000 cycles with a 30 second dwell time, and then shear bond strength was determined in a universal test machine(Model 4200, Instron Co., Canton, USA). The crosshead speed was 1 mm/min. The result was analyzed with one-way analysis of variance(ANOVA) and the Tukey test at a significance level of P<0.05. Results : Superbond $C&B^{(R)}$ at scratching with diamond burs showed the highest shear bond strength than others (p<.05). For Panavia $F^{(R)}$, groups of scratching and sandblasting showed significantly higher shear bond strength than control group(p<.05). For Rely X $Luting^{(R)}$, only between scratching & control group, significantly different shear bond strength was observed(p<.05). Conclusion : Within the limitation of this study, Superbond $C&B^{(R)}$ showed clinically acceptable shear bond between bovine teeth & zirconia ceramics regardless of surface treatments. For the surface treatment, scratching increased shear bond strength. Increase of shear bond strength by sandblasting with $110{\mu}m$ $Al_2O_3$ was not statistically different.