• Title/Summary/Keyword: silica-silane

Search Result 155, Processing Time 0.022 seconds

Effect of Types of Colloidal Silica on Properties of Hydrophilic Coating Films (콜로이드 실리카 종류가 친수성 코팅 필름의 물성에 미치는 영향)

  • Yang, Jun Ho;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.830-836
    • /
    • 2017
  • Hydrophilic coating solutions were prepared by reacting a silane coupling agent, GPTMS (3-glycidoxypropyl trimethoxysilane) with colloidal silica. Hydrophilic coating films were also obtained by depositing the hydrophilic coating solutions on polycarbonate substrates by spin-coating and subsequently by thermal curing at $120^{\circ}C$. During this process, the effect of average particle sizes of colloidal silica was studied on the properties of coating films. As a result, coating film, prepared from colloidal silica with average particle size of 25 nm, showed a low contact angle of $20^{\circ}$ and a good pencil hardness of H. On the other hand, coating films, prepared from colloidal silica with average particle sizes of 15 nm and 45 nm, exhibited high contact angles of $27^{\circ}$ and $36^{\circ}$ and pencil hardness of H and B, respectively.

Weatherability of Organic-Inorganic Hybrid Coating Agents with N-Triethoxy silyl propyl quinine urethane (N-Triethoxy silyl propyl quinine urethane을 도입한 유-무기 복합 코팅제의 내후성)

  • Lee, Man Sung;Jo, Nam-Ju
    • Journal of Adhesion and Interface
    • /
    • v.2 no.2
    • /
    • pp.20-27
    • /
    • 2001
  • Recently polycarbonate material has been utilized as windows in aircraft, buildings, and optical lens. However, while polycarbonate has excellent optical transparency, impact strength and many beneficial mechanical properties, it possesses poor abrasion resistance and weatherability. Then, there is a need for developing optically clear, anti-abrasive and weather resistant hard coating agents for polycarbonate. In this study, N-triethoxy silyl propyl quinine urethane(TESPQU) was synthesized with quinine and 3-isocyanato propyl triethoxy silane(3-IPTES). In order to introduce optically active silane in the main siloxane network, TESPQU was co-hydrolysed and co-condensed with methyl triethoxy silane(MTES) under acidic conditions. Polycarbonate sheets were coated with silica coating agents by the sol-gel method, and their abrasion resistance, ability of UV absorption and weatherability were evaluated. Coating agents containing hydroxybenzophenone as a UV absorber were also prepared to compare weatherability with TESPQU containing coating agent. TESPQU containing coating agent had good weatherability in accelerated QUV test.

  • PDF

STDUY ON THE SURFACE MORPHOLOGE AND SHEAR BOND STRENGTH OF IN-CERAM CORE TO RESIN CEMENT AFTER VARING MODES OF SURFACE CONDITIONING (In-Ceram 코아의 표면처리 방법에 따른 레진 시멘트와의 결함강도 및 표면상태에 관한 연구)

  • Kim, Yeung-Sug;Woo, Yi-Hyung;Lim, Ho-Nam;Choi, Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.4
    • /
    • pp.693-704
    • /
    • 1995
  • This study was performed to evaluate effective surface conditioning method of In-Ceram core to improve bonding with resin cement. The surface of each sample was avraded with glass bead for 20 seconds and then subjected to one of the following conditions : no modification, sandblasting with $50{\mu}m$ slumimum oxide powders for 20 seconds, etching with 20% hydrofluoric acid for 5, 10, and 15 minutes(half of the etched samples were coated with silane), and sandblasting with $250{\mu}m$ aluminum oxide powders and silica coating whith Silicoater MD system(Kulzer, Germany). The surface morphology changes were examined with scanning electronic microscope(SEM. and the shear bond strength of In-Ceram core samples to resin cement(Panavis 21, Kurayay, Japan) were measured. It was concluded that : 1. By SEM observation, 20% HF acid etching did not create clear microretentive structure and surface roughness diminished with increace in etching time. Sandblasting was more effective than 20% hydrofluoric acid etching in producing microretentive structure. 2. The bond strengths of all In-Ceram core samples surface conditioned were increased that that of control group. 3. Silica coating showed higher bond strength than etching with 20% hydrofluoric acid. 4. The use of silane coating was more effective in improving bond strength than lengthening etching time.

  • PDF

Preparation of Hydrophilic Coating Film Using GPS(Glycidoxypropyl Trimethoxysilane) (GPS(Glycidoxypropyl Trimethoxysilane)을 이용한 친수성 코팅 필름의 제조)

  • Park, Jung Kook;Song, Ki Chang;Kang, Hyun Uk;Kim, Sung Hyun
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.735-740
    • /
    • 2002
  • In order to improve the anti-fogging property of polymer films, organic-inorganic hybrid coating solutions which have good hydrophilic property and transmission in the range of visible light were synthesized by the sol-gel method. The coating solutions were prepared by adding glycidoxypropyl trimethoxysilane(GPS) to a colloidal silica(15 nm) suspension(Ludox). GPS as silane coupling agent forms strong bonds to the colloidal silica and surrounding polymer matrix and links two different materials together. Solutions prepared by addition of GPS at the acidic condition resulted in coatings that were less prone to cracking, while those at the basic condition caused coatings with more cracking. These resulted in better hydrophilic property and transmission in the range of visible light for the solution prepared at the acidic condition(pH 2). Compared with coatings under acidic conditions, coatings prepared at basic conditions showed worse hydrophilic property and transmission in the range of visible light.

Studies on the Physical Properties of Synthetic Rubber Blends Containing Rein-forcing Fillers (보강성 충전제를 함유한 합성고무 블렌드의 물리적 특성에 관한 연구)

  • Go, Jin-Hwan;Lee, Seog
    • Elastomers and Composites
    • /
    • v.33 no.4
    • /
    • pp.231-237
    • /
    • 1998
  • In order to investigate the physical properties of rubber blend compound, this experiment was carried out on the cure rate, loss tangent, reinforcement and abrasion properties of S-SBR (solution styrene-butadiene rubber) blends containing silane coupled silica and E-SBR (emulsion styrene-butadiene rubber) blends containing carbon black as a model compound. E-SBR blend showed the highest total bound rubber(TBR), while S-SBR blends showed constant TBR level regardless of rubber type. Rapid cure rate was achieved when the styrene and vinyl content of rubber microstructure decreased and TBR content of rubber compounds increased. The modulus as the index of rubber reinforcement showed the linear relation with TBR content. The large amount of PICO loss was observed when the styrene and vinyl content of rubber microstructure increased, while the small amount of PICO loss was observed when the ratio of bu-tadiene increased in the S-SBR blends with silane copuled silica. The high loss tangent at $0^{\circ}C$, the low loss tangent at $60^{\circ}C$, and the large difference of loss tangent were shown in the S-SBR blends with high styrene content compared to E-SBR blend.

  • PDF

EFFECT OF SPHERICAL SILICA FILLER ON THE PHYSICAL PROPERTIES OF EXPERIMENTAL COMPOSITES (구상형 실리카 필러가 실험적 복합레진의 물성에 미치는 효과)

  • Kang, Seung-Hoon;Park, Sang-Jin;Min, Byung-Soon;Choi, Ho-Young;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.88-99
    • /
    • 1999
  • The purpose of this study was to investigate the physical properties of experimental composite resins made with the spherical and crushed fillers. The 14 experimental composite resins containing 0, 5, 10, 15, 20 and 25%(w/w) in spherical filler group and 0, 10, 20, 30, 40, 50, 60 and 70%(w/w) in crushed filler group, incorporated in a Bis-GMA matrix (Aldrich Co., USA), were made with 1% ${\gamma}$-methoxy silane treated fillers. The polymer matrix was made by dissolving 0.7%(w/w) of benzoyl peroxide(Janssen Chemical Co. Japan) in methacrylate monomer, whereupon 0.7%(v/v) N,N-dimethyl-p-toluidine(Tokyo Kasei Co. Japan) was added to the monomer. The weight percentage of each specific particle size distribution could be determined from a knowledge of the specific gravity, the weight(w/w), and corresponding volume %(v/v) of the filler sample in resin monomer. In crushed silica group and spherical silica group, the diametral tensile strengths and compressive strengths were measured with Instron Testing Machine(No.4467), and analyzed in 14 experimental composite resins made by filler fractions. The shear bond strength of 14 experimental composite resins to bovine enamel was measured with universal testing machine(Instron No.4467). The fracture surfaces were sputter-coated with a gold film and investigated by SEM. The results were as follows; 1. The diametral tensile strength was tendency to increase in crushed silica group, but not in spherical silica group. The highest diametral tensile strength was found in 20% filler fractions of two groups. 2. The compressive strength was higher in 15%(w/w) and 20%(w/w) in spherical silica group than in crushed silica group, but not in spherical silica group. 3. The significant correlation was noticed in increase in shear bond strength in crushed silica group, but not in spherical silica group. 4. The significantly highest shear bond strength was noticed in 50% filler concentration in crushed silica group, and in 15% filler concentration in spherical silica group, it was not significant in relation. 5. In crushed silica group, cut surface of resin matrix and the interface between resin and filler is obvious. In spherical silica group, fractures that occurred through the filler particles were round in shape.

  • PDF

Quantitative Analysis of Silanization Degree of Silica Nanoparticles Modified with Bis[3-(trimethoxysilyl)propyl]amine Coupling Agent (Bis[3-(trimethoxysilyl)propyl]amine 커플링제로 개질된 실리카 나노입자의 실란화도 정량 분석)

  • Jeon, Ha-Na;Kim, Jung-Hye;Ha, Ki-Ryong
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.372-379
    • /
    • 2012
  • In this study, we treated silica nanoparticles with bis[3-(trimethoxysilyl)propyl]amine (BTMA) silane coupling agent to modify their surfaces. We investigated the effects of BTMA hydrolysis time, BTMA concentration and BTMA treatment time on the degree of silanization reaction of silica nanoparticles. We used Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA) and solid state cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy (NMR) to obtain quantitative data. We found the decrease of isolated Si-OH peak intensity at 3747 $cm^{-1}$ and the increase of $-CH_2 $stretching and bending peaks with increasing hydrolysis time, concentration and treatment time of BTMA. EA analysis results also supported this trend. We found a strong effect of BTMA concentration on the degree of silanization of the silica particles, but weak effects of the hydrolysis time and the treatment time.

Superhydrophobic Surfaces for condensation by using spray coating method

  • Oh, Seungtae;Seo, Donghyun;Lee, Choongyeop;Nam, Youngsuk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.157.2-157.2
    • /
    • 2016
  • Water repellent surfaces may enhance the condensation by efficiently removing the condensed droplets. However, such surfaces may lose their original performance as they are exposed to external mechanical stresses. In this work, we fabricated spray-coated mechanically robust superhydrophobic surfaces using treated titanium dioxide (Type 1) or silica particles (Type 2). Then we compared the mechanical robustness of such surfaces with the silane-coated superhydrophobic surface and PEEK coated surface using a controlled-sand blasting method. The results show that the spray-coated samples can maintain the same level of the contact angle hysteresis than silane-coated superhydorphobic surface after sand blasting at 2 bar. The spray-coating method was applied to the tube type condenser and the condensation behaviors were observed within the environmental chamber with controlled pressure, humidity and non-condensable gas. Previously-reported droplet jumping was observed in the early stage of the condensation event, but soon the droplet jumping stopped and only dropwise condensation was observed since the condensed droplets were pinned on the cracks at spray-coated surfaces. The static contact angle decreases from $158.0^{\circ}$ to $133.2^{\circ}$, and hysteresis increases from $3.0^{\circ}$ to $23.5^{\circ}$ when active condensation occurs on such surfaces. This work suggests the benefits and limitation of spray-coated superhydrophobic condensers and help develop advanced condensers for practical use.

  • PDF

A Study on the Physical Properties of Reinforcing Fillers with Dual Phase Structure (이중상 구조를 가진 보강성 충전제의 물리적 특성 연구)

  • Lee, Seag;Park, Nam Cook
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.608-613
    • /
    • 1998
  • The purpose of this experiment was the physical properties of rubber compounds with DPCB and pure carbon black. Si-O peak in the silcia surface was observed at the range of wavenumber from 1,100 to 1,200 in the DPCB by FT-IR analysis. Cure rate of rubber compounds containing DPCB and organic silane coupling agent were (Si69) delayed compared with those containing pure carbon black. 300% modulus and interaction coefficient of DPCB with silane coupling agent were higher than those of pure carbon black and PICO weight loss amount showed constant value. It was found that $0^{\circ}C$ tan$\delta$ of rubber compounds with DPCB was larger than those of pure carbon black at 2.0% silane coupling agent based on 50 phr DPCB and $60^{\circ}C$ tan$\delta$ of rubber compounds with DPCB decreased as increasing the usage coupling agent. Consequently, it is postulated that DPCB is strong candidate material for lowering rolling resistance under constant abrasion resistance.

  • PDF

Effect of Size and Morphology of Silica Abrasives on Oxide Removal Rate for Chemical Mechanical Polishing (기계화학적 연마용 실리카 연마재의 형상과 크기가 산화막 연마율에 미치는 영향)

  • Lee, Jinho;Lim, Hyung Mi;Huh, Su-Hyun;Jeong, Jeong-Hwan;Kim, Dae Sung;Lee, Seung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.631-635
    • /
    • 2011
  • Spherical and non-spherical silica particles prepared by the direct oxidation were studied for the effect of the particle size and shape of these particles on oxide CMP removal rate. Spherical silica particles, which have 10~100 nm in size, were prepared by the direct oxidation process from silicon in the presence of alkali catalyst. The 10 nm silica particles were aggregated by addition of an acid, an alcohol, or a silane as an aggregation inducer between the particles. Two or more aggregated silica particles were used as a seed to grow non spherical silica particles in the direct oxidation process of silicon in the presence of alkali catalyst. The oxide removal rate of spherical silica particles increased with increasing an average particle size for spherical silica abrasives in the oxide CMP. It further increased non-spherical particles, compared with the spherical particles in the similar average particle size.