• Title/Summary/Keyword: silica-filled compound

Search Result 56, Processing Time 0.019 seconds

Wear Particulate Matters and Physical Properties of Silica filled ENR/BR Tread Compounds according to the BR Contents

  • Ryu, Gyeongchan;Kim, Donghyuk;Song, Sanghoon;Lee, Hyun Hee;Ha, Jin Uk;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.56 no.4
    • /
    • pp.243-249
    • /
    • 2021
  • The demand for truck bus radial (TBR) tires with enhanced fuel efficiency and wear resistance have grown in recent years. In addition, as the issue of particulate matter and air pollution increases, efforts are being made to reduce the generation of particulate matter. In this study, we investigated the effect of varying the content of butadiene rubber (BR) on the properties of the rubber compounds and the amount of particulate matter in the TBR tire tread compound. Furthermore, we utilized carbon black in the NR/BR blend compounds owing to its excellent compatibility, and we used silica in the ENR-25/BR blend compounds because it can interact chemically with epoxide groups. The NR/BR blend compounds and the ENR-25/BR blend compounds were evaluated by varying their BR content between 20 phr and 30 phr. The results showed that the ENR-25/BR blend compounds had superior wear resistance than the NR/BR blend compounds. This was caused by the interaction between silica and ENR. In addition, it was confirmed that the increased wear resistance as the BR content increased. Furthermore, compared to the NR/BR blend compounds, ENR-25/BR blend compounds exhibited a lower tan 𝛿 value at 60℃ because silica was used as filler. This indicates a higher fuel efficiency. The measurement results for wear particulate matter showed that as increasing the BR content resulted in generation of less wear particulate matter. This was caused by the increased wear resistance. Moreover, the ENR-25/BR blend compounds with excellent filler-rubber interaction exhibited lower quantities of generated wear particulate matters as compared to the NR/BR blend compounds.

Flow Properties of Liquid Epoxy Compounds as a Function of Filler Fraction for the Underfill (Underfill용 액상 Epoxy Compound의 Filler 충진에 따른 Flow특성 연구)

  • 김원호;황영훈;배종우;정혜욱
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.2
    • /
    • pp.21-27
    • /
    • 2000
  • To develop the underfill materials which are required for the new process of semi-conductor industry, the properties of epoxy/anhydride/cobalt(II) catalyst system with two types of fused silica(1 $\mu\textrm{m}$, 8 $\mu\textrm{m}$) are studied as a function of filler fraction. According to the curing profile, the optimum catalyst amount was 1.0 wt% for full curing at the conditions of $160^{\circ}C$/l5 min., and we could conclude that the viscosity has superior effect on the real flaw through the relationship between surface tension and viscosity data. The underfills which were filled with 1 $\mu\textrm{m}$ fused silica did not show good flowability, but they should be useful by improving the viscosity for a future process which has small gaps. The underfills which were filled with 8 $\mu\textrm{m}$ fused silica showed good flowability when the filler contents were 55~60 vol%. The model which was referred by Matthew can predict the real flow length only when the underfill has high viscosity and low surface tension.

  • PDF

New Micropolymer Technologies for Increased Drainage and Retention for both Wood and Non-Wood Containing Furnishes (목질 및 비목질 함유 지료의 탈수속도와 보류향상을 위한 새로운 마이크로폴리머 기술)

  • Lewis, Christopher;Polverari, Marco
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2008.05a
    • /
    • pp.1-46
    • /
    • 2008
  • The ability to control filler performance and fines retention is vital in the development of both filled and non filled grades, respectively. This is very important when achieving the desired sheet structure necessary to maximize machine performance and end user demands. A narrow balance exists in attaining the desired retention and formation particularly in systems with heavier ash loads and producing paper and paper board on higher speed high shear equipment. A new generation of both cationic and anionic micropolymer technologies has been developed. These water based chemistries are volatile organic compound (VOC) and alkyphenol ethoxylate (APE) free. When these novel micropolymers are applied with linear poly-acrylamide or in conjunction with inorganic microparticle technologies (such as silica or swellable minerals), substantial increases in drainage, fibre retention and ash retention are observed. These improvements have been observed not only in high filled wood and non wood containing grades such as fine paper and super calendared sheets (SCA), but also in low filled newsprint grades. Of particular note is the drainage improvement seen with the application of the cationic micropolymers in unbleached packaging grades with poly-acrylamide.

  • PDF

The Characteriastics of Viscosity Behavior of EMC for Semi-conductor Encapsulant - Containing One Kind of Spherical Silica (반도체 봉지재용 EMC의 점도거동 특성 - 한 종류의 구형 실리카 포함)

  • Kim, In Beom;Lee, Myung Cheon;Lee, Euy Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.8
    • /
    • pp.1175-1179
    • /
    • 1999
  • The rheological properties of highly filled epoxy molding compound(EMC) for semi-conductor encapsulants are greatly affected by the content of filler loaded. In this study, the change of viscosity of EMC for semi-conductor encapsulants with the filler content was investigated. Also, both of Cox-Merz and modified Cox-Merz equations were applied to convert the viscosity change as a function of frequency to that of shear rate. It was ovserved that shear thinning and yield stress occured at high filler contents and that the Cox-Merz equation could not be applied at high filler contents because of the difference of viscosity according to the various strains. When the modified Cox-Merz equation was applied, the all the curves having different strain tend to be represented by one master curve, even though some deviation was obseved at high filler content and strain.

  • PDF

Effect of Metal Complexes as a Catalyst on Curing Behavior and Mechanical Properties of Silica Filled Epoxy-Anhydride Compounds (촉매로서 금속 착화합물이 실리카가 충전된 에폭시-산무수물 복합체의 경화 거동 및 물성에 미치는 영향)

  • Seo, Byeongho;Lee, Dong-Hoon;Lee, Noori;Do, Kiwon;Ma, Kyungnam;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.59-65
    • /
    • 2014
  • In this study, in order to complete curing reaction of the molding compound comprising an epoxy/anhydride at $71^{\circ}C$ for 40 hours, metal coordination complexes such as cobalt (II) acetylacetonate, potassium acetylacetonate, iron (III) acetylacetonate and chromium (III) octoate as a catalyst were applied to the epoxy/anhydride compounds respectively. The weight ratio of an epoxy part/an anhydride part was adjusted to improve the mechanical properties of the molding compound. According to the experimental results, an epoxy/anhydride compound containing chromium (III) octoate showed a high conversion at $71^{\circ}C$ for 40 hours as well as a proper processability at room temperature among the several metal coordination complexes. For the mechanical properties of the cured epoxy/anhydride compound, the compounds containing weight ratio from 0.9/1 to 0.5/1 of the epoxy part/anhydride part with chromium (III) octoate showed the high flexural strength, and higher compressive strength was shown with increasing of the hardener part.

Studies on the Physiological Chemistry of the Spring Growth Habits in Naked Barley V. Changes in the Isozyme Patterns and Activities of Peroxidase During the Differentiation (과맥의 파성에 대한 생리화학적 연구 V. 유수의 분화, 발육과정중 Peroxidase의 활성 및 Isozyme Pattern)

  • 최선영;이강수;박기훈
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.3
    • /
    • pp.375-382
    • /
    • 1986
  • This study was carried out to obtain the basic information for the clarification of spring growth habits mechanism of naked barleys. The isozyme patterns and activities of peroxidase in the young spike and leaf blade were analyzed during the differentiation and development of young spike. The characteristic differences between the normal and rosetted type were in c and g isozymes in young spike, and in i isozyme in the leaf blade. In the normal type, c and i isozymes disappeared at the stage of spi-kelet differentiation, g isozyme at the stage of flolet differentiation. But, in the rosetted type, those three isozymes remained in dark stained condition until the time of final sampling. Especially, those three isozymes were higher in the rosetted type than those in the normal type even at the stage of bract differentiation(BDS), just prior to the reproductive stage. The activities of peroxidase decreased slowly after BDS in the young spike and leaf blade in the normal type, While, in the rosetted type, increased linearly, and the degree of increasing was remarkable in the young spike. It was interesting that the degree of activities in young spike was higher in the rosetted type than that in the normal type even at BDS. From the above results, the remarkable differences of the isozyme patterns and activities at BDS between the normal and rosetted type were considered to be the physiological expression of the varieties concerned with the degree of spring growth habits.

  • PDF