The Characteriastics of Viscosity Behavior of EMC for Semi-conductor Encapsulant - Containing One Kind of Spherical Silica

반도체 봉지재용 EMC의 점도거동 특성 - 한 종류의 구형 실리카 포함

  • Kim, In Beom (Department of Chemical Engineering, Dongguk University) ;
  • Lee, Myung Cheon (Department of Chemical Engineering, Dongguk University) ;
  • Lee, Euy Soo (Department of Chemical Engineering, Dongguk University)
  • Received : 1999.08.13
  • Accepted : 1999.11.10
  • Published : 1999.12.10

Abstract

The rheological properties of highly filled epoxy molding compound(EMC) for semi-conductor encapsulants are greatly affected by the content of filler loaded. In this study, the change of viscosity of EMC for semi-conductor encapsulants with the filler content was investigated. Also, both of Cox-Merz and modified Cox-Merz equations were applied to convert the viscosity change as a function of frequency to that of shear rate. It was ovserved that shear thinning and yield stress occured at high filler contents and that the Cox-Merz equation could not be applied at high filler contents because of the difference of viscosity according to the various strains. When the modified Cox-Merz equation was applied, the all the curves having different strain tend to be represented by one master curve, even though some deviation was obseved at high filler content and strain.

반도체 봉지재용 epoxy molding compound(EMC)에는 고함량의 충전제가 함유되어 있어 충전제의 함량이 유변학적 거동에 큰 영향을 미친다. 본 연구에서는 반도체 봉지재용 EMC의 점도거동을 충전제 함량과 주파수(frequency)의 변화에 따라 조사하였다. 또한 주파수변화에 따른 점도거동을 전단율(shear rate)의 함수로 변환하기 위해 Cox-Merz 식과 modified Cox-Merz 식을 적용해 보았다. 이 결과 고함량에서 전단박화현상(shear thinning)과 항복강도(yield stress)가 관찰되었으며 전단율의 함수로의 변환은 Cox-Merz식을 적용하였을 때는 고종도에서 변형율 변화에 따른 점도값 차이 때문에 적용될 수 없었다. Modified Cox-Merz식을 적용하였을 때는 고농도/고변형율에서는 측정장치의 한계 때문에 오차를 보이기는 하지만 각 변형율에 따른 점도값들이 한 개의 마스터곡선으로 일치되는 경향을 보였다.

Keywords

References

  1. Polym. Eng. Sci. v.22 D. M. Bigg
  2. J. Rheol. v.39 J. B. Jansma;S. Qutubuddin
  3. Proceedings 12th International Congress on Rheology J. Kaschta;H. Munstedt
  4. Polym. Eng. Sci. v.33 H. NG;I. Manas-Zloczower
  5. Rheology of Polymeric Systems; principles and applications P. J. Carreau;D. C. R. De Keel;R. P. Chhabra
  6. Plastic Encapsulated Microelecronics; materials, process, quality reliability, and application M. G. Pecht;L. T. Nguyen;E. B. Hakim
  7. Microelectronics Packaging Handbook-semiconductor packaging(2nd ed.) R. R. Tummula;E. J. Rymaszewski;A. G. Klopfenstein
  8. Melt Rheology and Its Role in Plastics Processing-Theory and Applications J. Dealy;K. Wissbrun
  9. J. Appl. Polym. Sci. v.64 P. Hally
  10. J. of Rheology v.35 D. Doraiswamy;A. N. Mujumdar;A. B. Metzner
  11. J. of Rheology v.29 A. B. Metzner
  12. Proc. ⅩⅡth Int. Congr. on Rheology P. Gondret;L. petit;G. Bossis