• Title/Summary/Keyword: silica-alumina

Search Result 265, Processing Time 0.028 seconds

An Innovative Solution for the Power Quality Problems in Induction Motor by Using Silica and Alumina Nano Fillers Mixed Enamel for the Coatings of the Windings

  • Mohanadasse, K.;Sharmeela, C.;Selvaraj, D. Edison
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1621-1625
    • /
    • 2015
  • Power quality has always been a concern of power engineers. Certainly an argument can be successfully made that most parts of power engineering have the ultimate objective to improve power quality. AC motors were widely used in industrial and domestic applications. Generally, AC motors were of two types: Induction and Synchronous motors. In motor many parameters like different load cycling, switching, working in hot weather and unbalances creates harmonics which creates major reasons for temperature rise of the motors. Due to high peak value of voltage, harmonics can weaken insulation in cables, windings and capacitors and different electronic components. Higher value of harmonics increase the motor current and decrease the power factor which will reduce the life time of the motor and increase the overall rating of all electrical equipments. Harmonics reduction of all the motors in India will save more power. Coating of windings of the motor with nano fillers will reduce the amount of harmonics in the motor. Based on the previous project works, actions were taken to use the enamel filled with various nano fillers for the coating of the windings of the different AC motors. Ball mill method was used to convert the micro particles of Al2O3, SiO2, TiO2, ZrO2 and ZnO into nano particles. SEM, TEM and XRD were used to augment the particle size of the powder. The synthesized nano powders were mixed with the enamel by using ultrasonic vibrator. Then the enamel mixed with the nano fillers was coated to the windings of the several AC motors. Harmonics were measured in terms of various indices like THD, VHD, CHD and DIN by using Harmonic analyzer. There are many other measures and indices to describe power quality, but none is applicable in all cases and in many instances, these indices may hide more than they show. Sometimes power quality indices were used as a basis of comparison and standardization. The efficiency of the motors was increased by 5 – 10 %. The thermal withstanding capacity of the motor was increased by 5º to 15º C. The harmonics of the motors were reduced by 10 – 50%.

A Close Examination of Unstability and a Quality Improvement using Anhydrous $Na_2CO_3$ in Waste Plastic's Thermal Pyrolysis Oil (폐플라스틱 열분해 재생유의 불안정한 요인 규명과 무수탄산나트륨으로 품질 향상)

  • Seo, Young-Hwa;Ko, Kwang-Youn
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.12
    • /
    • pp.1371-1380
    • /
    • 2007
  • Study on the instability of waste plastic's thermal pyrolysis oil was carried out for the purpose of improving its quality. The reaction of pyrolysis oil with ozone changed double bonds into aldehydes and ketone, estimated that HDPE pyrolysis oil contained $\sim45$ wt% 1-alkene type olefins, and PP pyrolysis oil did $\sim73$ wt% olefins, which consisted of $\sim47$ wt% secondary and $\sim20$ wt% primary alkenes. The dark brown color and odor of pyrolysis oil were improved by eliminating double bonds, indicated that they were directly related to unsaturated hydrocarbons. Container test showed that metal can affected oil quality worse than the brown glass bottle. Antioxidant added into pyrolysis oil was consumed up to 90% within $2\sim3$ days and the wt. composition of unsaturated hydrocarbons in pyrolysis oil was not changed within 50 days, inferring that instability of pyrolysis oil due to unsaturated bonds can be stabilized by antioxidants. Adsorption test on silica gel, activated carbon and alumina to remove precipitates in oil produced a good result, but not enough to remove moisture. However, cheap anhydrous sodium carbonate showed the best removal efficiency of moisture as well as precipitates in oil. Therefore the pyrolysis oil quality improvement was accomplished by applying anhydrous $Na_2CO_3$ into the production plant.

Removal of Odorants by Selective Adsorption from Natural Gas for Protection of Steam Reforming Catalyst in Fuel Cell from Sulfur Poisoning (연료전지용 개질기 촉매의 피독방지를 위한 천연가스 중의 황성분 부취제의 선택적 흡착제거)

  • Oh, Sang-Seung;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.337-343
    • /
    • 2007
  • The reforming catalyst and the electrodes in fuel cells can be poisoned by the organic sulfur compound which is added as an odorant for checking out the leakage of natural gas, and that makes a big problem of system degradation. In this study, various adsorbents, such as silica, ${\gamma}$-alumina, activated carbon, HZSM-5, Ultra-stable Y zeolite (USY), and beta zeolite (BEA), were utilized to remove tetra-hydrothiophene (THT) and tert-butylmercaptan (TBM), and to confirm the performance in the adsorption of those odorants by using a continuous adsorptive bed. The effects of Si/Al ratio of zeolites, adsorption temperature and the type of balance gas (methane or He) on the adsorption performance in the packed bed have been investigated. In addition, the competitive adsorption between TBM and THT on the adsorbents was also estimated. The result shows that H-type BEA zeolite exhibited the highest adsorption capacity for TBM and THT odorant, and the higher amount of THT was removed adsorptively on the same adsorbent than TBM. The physical and chemical adsorption of those compounds on acid sites of zeolite were confirmed by temperature programmed desorption (TPD) and infrared spectrum (IR) analyses.

Surface Reaction Products of CP- Ti and Ti-25wt%Pd Castings Used for Dental Application (치과용 티타늄 및 Ti-25wt%Pd 주조체의 표면반응생성물)

  • 정준영;문수;이진형
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.383-389
    • /
    • 2004
  • A commercially pure Ti(CP-Ti) and Ti-25wt%Pd alloy for dental applications were cast into a phosphate-bonded Al$_2$ $O_3$/ $SiO_2$ investment mold and the surface of the casting specimens were investigated by means of SEM/EDS, XRD and XPS. The addition of 25wt%Pd in CP-Ti showed a moderate mold reaction owing to the considerable lowering of melting point. XRD analysis of the investment after burn-out treatment revealed that it consisted essentially of $SiO_2$, Al$_2$ $O_3$, P$_2$O$\_$5/, Mg$_3$(P $O_4$)$_2$, AlP $O_4$, Mg$_2$ $SiO_4$, MgAl$_2$ $O_4$ The mold reaction products were Ti$\_$5/Si$_3$ and Ti $O_2$ in case of CP-Ti casting and Ti $O_2$ and SiO$\_$x/ in case of Ti-25wt% Pd casting.

Carbonation Characteristics of Alkali Activated Blast-Furnace Slag Mortar (알칼리활성 고로슬래그 모르타르의 탄산화 특성)

  • Song, Keum-Il;Yang, Keun-Hyeok;Lee, Bang-Yeon;Song, Jin-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.315-322
    • /
    • 2012
  • Alkali-activated slag (AAS) is the most obvious alternative materials that can replace OPC. But, AAS industrial usage as a structural material should be evaluated for its durability. Carbonation resistance is one of the most important factors in durability evaluation. Test results for 18 slag-based mortars activated by sodium silicate and 6 OPC mortars were obtained in this study to verify the carbonation property. Main variables considered in the study were flow, compressive strength before and after carbonation, and carbonation depth. Mineralogical and micro-structural analysis of OPC and AAS specimens prior to and after carbonation was conducted using XRD, TGA, FTIR FE-SEM. Test results showed that CHS was major hydration products of AAS and, unlike OPC, no other hydration products were found. After carbonation, CSH of hydration product in AAS turned into an amorphous silica gel, and alumina compounds was not detected. From the analysis of the results, it was estimated that the micro-structures of CSH in AAS easily collapsed during carbonation. Also, the results showed that this collapse of chemical chain of CSH lowered the compressive strength of concrete after carbonation. By increasing the dosage of activators, carbonation resistance and compressive strength were effectively improved.

Clay Mineral Composition of the Soils Derived from Residuum and Colluvium (잔적 및 붕적모재 토양의 점토광물 특성구명)

  • Zhang, Yong-Seon;Sonn, Yeon-Kyu;Jung, Sug-Jae;Lee, Gye-Jun;Kim, Myung-Sook;Kim, Sun-Kwan;Lee, Ju-Young;Pyun, In-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.245-252
    • /
    • 2006
  • This experiment was conducted to investigate the distribution and compositions of clay mineral and to replenish the soil classification system in Korea. Soil layer samples were collected from 26 residuum and colluvium soil series out of 390 soil series in Korea, and then analyzed for soil physical and chemical characteristics, mineral and chemical compositions of clay in B horizon soils. Major clay minerals of residuum and colluvium were illite and chlorite in soils originated from the sedimentary rock such as limestone, shale, sandstone and conglomerate; quartz and kaolin in soils originated from rhyolite, neogene deposits, porphyry and tuff; and kaolin and quartz in the soils originated from granite, granite gneiss and anorthosite. Clay minerals in Korean soils were divided into 4 groups: mixed mineral group(MIX) mainly contained with illite, kaolin and vemiculite; kaolin group(KA) with kaolin and illite; chlorite group(CH) with chlorite and illite; and smectite group(SM) with kaolin, illite and smectite. The most predominant clay mineral group was kaolin group(KA) with kaolin and illite; an mixed mineral group(MIX) with illite, kaolin and vemiculite. Cation exchange capacity (CEC) of clay was low in the soils mainly composed with MIX and KA groups and silica-alumina molar ratio of clay was high in the soils composed with SM group

Selective Synthesis of Acetonitrile via Direct Amination of Ethanol Over Ni/SiO2-Al2O3 Mixed Oxide Catalysts (Ni/SiO2-Al2O3 복합 산화물 촉매 상에서 에탄올의 직접 아민화 반응에 의한 선택적 아세토니트릴 합성)

  • Kim, Hanna;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.281-295
    • /
    • 2021
  • In this study, the direct amination of ethanol was performed over impregnated Ni on SiO2-Al2O3 mixed oxide catalysts prepared by varying Si/(Si + Al) molar ratio to 30 mol%. To characterize the physico-chemical properties of the catalysts used, X-ray diffraction (XRD), N2-physisorption, temperature-programmed desorption of iso-propyl alcohol (IPA-TPD), temperature-programmed desorption of ethanol (EtOH-TPD), temperature-programmed reduction with H2 (H2-TPR), H2-chemisorption and transmission electron microscopy (TEM) were used. The acidic property was continuously increased until Si/(Si + Al) = 30 mol% in SiO2-Al2O3 mixed oxides used. The dispersion of Ni metal and surface area, acid characteristics of the supported Ni catalyst have a complex effect on the catalytic reaction activity. The low reduction temperature of nickel oxide and acidic properties were beneficial to the formation of acetonitrile. In terms of conversion of ethanol, Ni/SiO2-Al2O3 catalyst with a molar ratio of 10 mol% Si/(Si+Al) showed the highest activity and a volcanic curve based on it. The tendency of results were consistent in the metal dispersion and catalytic activity.

Properties and Fabrication of Glass Fiber using Recycled Slag Materials (슬래그 재활용 원료를 이용한 유리섬유 제조 및 특성)

  • Lee, Ji-Sun;Kim, Sun-Woog;Ra, Yong-Ho;Lim, Tae-Young;Lee, Youngjin;Jeon, Dae-Woo;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.28 no.12
    • /
    • pp.763-768
    • /
    • 2018
  • In this study, glass fibers are fabricated via a continuous spinning process using manganese slag, steel slag, and silica stone. To fabricate the glass fibers, raw materials are put into an alumina crucible, melted at $1550^{\circ}C$ for 2 hrs, and then annealed at $600^{\circ}C$ for 2 hrs. We obtain a black colored glass. We identify the non-crystalline nature of the glass using an XRD(x-ray diffractometer) graph. An adaptable temperature for spinning of the bulk marble glass is characterized using a high temperature viscometer. Spinning is carried out using direct melting spinning equipment as a function of the fiberizing temperature in the range of $1109^{\circ}C$ to $1166^{\circ}C$, while the winder speed is in the range of 100rpm to 250rpm. We investigate the various properties of glass fibers. The average diameters of the glass fibers are measured by optical microscope and FE-SEM. The average diameter of the glass fibers is $73{\mu}m$ at 100rpm, $65{\mu}m$ at 150rpm, $55{\mu}m$ at 200rpm, and $45{\mu}m$ at 250rpm. The mechanical properties of the fibers are confirmed using a UTM(Universal materials testing machine). The average tensile strength of the glass fibers is 21MPa at 100rpm, 31MPa at 150rpm, 34MPa at 200rpm, and 45MPa at 250rpm.

Synthesis and Characterization of Zeolite Using Water Treatment Sludge (정수슬러지를 이용한 제올라이트의 합성 및 특성연구)

  • Ko, Hyun Jin;Ko, Yong Sig
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.263-269
    • /
    • 2020
  • Zeolite was synthesized hydrothermally using the water-treatment sludge, and the effects of various synthesis parameters like reaction temperature, reaction time, and Na2O/SiO2 molar ratio on the crystallization of zeolite were investigated. Crystal structure, physical property, and thermal stability of zeolite crystals were characterized by X-ray powder diffraction, FTIR spectroscopy, BET nitrogen adsorption, and TGA measurements. The removal efficiencies of nitrogen in ammonia, heavy metal ions, and TOC were calculated to evaluate zeolite's adsorption capacity. The primary chemical composition of water-treatment sludge was 28.79% Al2O3 and 27.06% SiO2. The zeolites were synthesized by merely employing the water-treatment sludge as silica and alumina sources without additional chemicals. Zeolite crystals synthesized through the water-treatment sludge were confirmed as an A-type zeolite structure. Zeolite A had the highest crystallinity obtained from a gel with the molar composition 2.1Na2O-Al2O3-1.6SiO2-65H2O after 5 h at a temperature of 90 ℃. The specific surface area of zeolite obtained was 55 ㎡ g-1, which was higher than commercial zeolite A. The removal efficiency of nitrogen in ammonia was 68% after 3 h of reaction time, while the removal efficiencies of Pb2+ and Cd2+ ions were 99.1% and 99.3%, respectively. These results indicate active ion exchange between Pb2+ or Cd2+ ion and Na+ ion in the zeolite framework. The adsorption experiments on the different zeolite addition conditions were performed for 3 h with 300 ppm humic acid. Based on the results, TOC's highest efficiency was 83% when 5 g of zeolite was added.

Evaluation of accuracy for measurement of Dioxins (PCDDs/PCDFs) by using certified reference material (CRM) (인증표준물질(Certified reference materials, CRM)을 이용한 이옥신류(PCDDs/PCDFs) 측정의 정확도 평가)

  • Youn, Yeu Young;Park, Deok Hie;Lim, Young Hee;Cho, Hye Sung
    • Analytical Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.376-385
    • /
    • 2009
  • In our study, the accuracy for measurement of seventeen 2,3,7,8-substituted PCDDs/PCDFs in certified reference material (CRM) which is the sample of homogeneous sediment matrix taken from an area known to have significant chemical contamination, particularly PCBs (polychlorinated biphenyls), was evaluated. Though the methodology in this study followed the official method of unintentionally produced persistent organic pollutants (UPOPs) announced by the Ministry of Environment of the Republic of Korea in 2007, there were slight changes using additional purification step by activated carbon column because the interferences of sample were not sufficiently removed when only multi-silica column and alumina column have been used for purification. The |En| number proposed by the Korea Research Institute of Standards and Science was used for a valuation basis of the accuracy. The |En| numbers of seventeen 2,3,7,8-substituted PCDDs/PCDFs have been indicated as 1 and below, they were decided "Pass" in this test, when DB-5MS column and SP-2331 column were used together. Because 1,2,3,7,8-PeCDD and #169-HxCB were not separated on DB-5MS column, the ions of 1,2,3,7,8-PeCDD were selected at M/M+2 instead of M+2/M+4 suggested by EPA 1613. It is possible to distinguish them in HRGC/HRMS analysis.