DOI QR코드

DOI QR Code

Selective Synthesis of Acetonitrile via Direct Amination of Ethanol Over Ni/SiO2-Al2O3 Mixed Oxide Catalysts

Ni/SiO2-Al2O3 복합 산화물 촉매 상에서 에탄올의 직접 아민화 반응에 의한 선택적 아세토니트릴 합성

  • Kim, Hanna (Department of Chemical Engineering, Chungbuk National University) ;
  • Shin, Chae-Ho (Department of Chemical Engineering, Chungbuk National University)
  • Received : 2020.12.18
  • Accepted : 2021.01.25
  • Published : 2021.05.01

Abstract

In this study, the direct amination of ethanol was performed over impregnated Ni on SiO2-Al2O3 mixed oxide catalysts prepared by varying Si/(Si + Al) molar ratio to 30 mol%. To characterize the physico-chemical properties of the catalysts used, X-ray diffraction (XRD), N2-physisorption, temperature-programmed desorption of iso-propyl alcohol (IPA-TPD), temperature-programmed desorption of ethanol (EtOH-TPD), temperature-programmed reduction with H2 (H2-TPR), H2-chemisorption and transmission electron microscopy (TEM) were used. The acidic property was continuously increased until Si/(Si + Al) = 30 mol% in SiO2-Al2O3 mixed oxides used. The dispersion of Ni metal and surface area, acid characteristics of the supported Ni catalyst have a complex effect on the catalytic reaction activity. The low reduction temperature of nickel oxide and acidic properties were beneficial to the formation of acetonitrile. In terms of conversion of ethanol, Ni/SiO2-Al2O3 catalyst with a molar ratio of 10 mol% Si/(Si+Al) showed the highest activity and a volcanic curve based on it. The tendency of results were consistent in the metal dispersion and catalytic activity.

Si/(Si + Al) 몰비를 30 몰%까지 변화시켜 제조한 SiO2-Al2O3 복합 산화물(SA) 상에 니켈을 함침법으로 제조한 촉매 상에서 에탄올의 아민화반응에 미치는 영향을 연구하였다. 제조된 촉매의 물리·화학적 특성을 알아보기 위하여 X-선 회절분석(XRD), N2 흡착분석, 이소프로판올 승온탈착(IPA-TPD), 에탄올 승온탈착(EtOH-TPD), 수소 승온환원(H2-TPR), H2 화학흡착, 투과전자현미경(TEM) 분석을 수행하였다. SA 복합 산화물 상에서 Si/(Si + Al) = 30 몰%가 될 때까지 지속적으로 산점이 증가하였다. 담지된 Ni 금속의 분산도, 비표면적 및 산 특성 등이 촉매 반응활성에 복합적으로 영향을 미쳤다. 산점 증가와 니켈 산화물의 낮은 환원 온도는 아세토니트릴 생성에 유리하게 작용하는 것으로 사료된다. 에탄올의 전환율 측면에서는 10 wt% Ni이 담지된 Si/(Si + Al) = 10 몰% 촉매가 가장 높은 전환율을 보였으며 이를 기준으로 화산형 형태를 나타냈고, Ni 금속 분산도와 경향이 일치했다.

Keywords

References

  1. Pollak, P., Romeder, G., Hagedorn, F. and Gelbke, H.-P., "Nitriles", Ullmann's Encyclopedia of Industrial Chemistry, 24, 251-265 (2000).
  2. Zimmermann, F. K., Mayer, V. W., Scheel, I. and Resnick, M. A., "Acetone, Methyl Ethyl Ketone, Ethyl Acetate, Acetonitrile and Other Polaraprotic Solvents are Strong Inducers of Aneuploidy in Saccharomyces Cerevisiae," Mutation Research, 149, 339-351 (1985). https://doi.org/10.1016/0027-5107(85)90150-2
  3. Yong, H., Park, H. and Jung, C., "Quasi-solid-state Gel Polymer Electrolyte for a Wide Temperature Range Application of Acetonitrile-based Supercapacitors," J. Power Sources, 447, 227390 (2020). https://doi.org/10.1016/j.jpowsour.2019.227390
  4. Liu, G., Guo, Y., Zhu, H., Yan, H., Zhu, B. and Li, G., "Enhanced PEDOT: PSS Films by Acetonitrile co- solvents and Their Application on Polymer Solar Cells," Optoelectr. Adv. Mater., 10, 293-699(2016).
  5. Chen, G., Fujimori, K., Lee, H., Nashed-Samuel, Y., Phillips, J., Rogers, G., Shen, H. and Yee, C., "Detection of Adulteration in Acetonitrile," Spectrochimica Acta Part A, 78, 1646-1650(2011). https://doi.org/10.1016/j.saa.2011.01.048
  6. Prates, J., Martins, G., Lopez-Fernandez, H., Lodeiro, C., Capelo, J. L. and Santos, H. M., "Modulating the Protein Content of Complex Proteomes Using Acetonitrile," Talanta, 182, 333-339(2018). https://doi.org/10.1016/j.talanta.2018.01.057
  7. Abaci, S. and Yildiz, A., "The Effect of Electrocatalytic Activity and Crystal Structure of PbO2 Surfaces on Polyphenylene Oxide (PPO) Production in Acetonitrile," Turk. J. Chem., 33, 215-222 (2009).
  8. Smith, A. E., "Use of Acetonitrile for the Extraction of Herbicide Residues from Soils," J. Chromatography A, 129(22), 309-314 (1976). https://doi.org/10.1016/S0021-9673(00)87789-4
  9. Rao, R. R., Srinivas, N., Kulkarni, S. J., Subrahmanyarn, M. and Raghavan, K. V., "Selective Preparation of Acetonitrile-from Ethanol over Vanadium Modified Silicoaluminophosphate Catalysts," Ind. J. Chern., 36A, 708-711(1997).
  10. Zhang, Y., Zhang, Y., Feng, C., Qiu, C., Wen, Y. and Zhao, J., "Amination of Ethanol to Acetonitrile over Ni-doped Co/γ-Al2O3 Catalyst," Catal. Comm., 10, 1454-1458(2009). https://doi.org/10.1016/j.catcom.2009.03.019
  11. Martin, A. and Lucke, B., "Ammoxidation and Oxidation of Substituted Methyl Aromatics on Vanadium-containing Catalysts," Catal. Today, 57, 61-70(2000). https://doi.org/10.1016/S0920-5861(99)00309-0
  12. Corker, E. C., Mentzel, U. V., Mielby, J., Riisager, A. and Fehrmann, R., "An Alternative Pathway for Production of Acetonitrile: Ruthenium Catalysed Aerobic Dehydrogenation of Ethylamine," Green Chem., 15, 928-933(2013). https://doi.org/10.1039/c3gc36513a
  13. Yao, Q., Zhang, Y. and Fu, Y., "Sustainable Production of Acetonitrile from Microalgae via Catalytic Fast Pyrolysis with Ammonia over Ga/HZSM-5 Catalysts," ACS Sustainable Chem. Eng., 7, 16173-16181(2019). https://doi.org/10.1021/acssuschemeng.9b03102
  14. Galanov, S. I., Sidorova, O. I., Golovko, A. K., Philimonov, V. D., Kurina, L. N. and Rozhdestvenskiy, E. A., "Catalytic Synthesis of Acetonitrile by Ammonolysis of Acetic Acid," Eurasian Chem-Tech J., 3, 173-178(2001). https://doi.org/10.18321/ectj562
  15. Yamamoto, T., "Studies on the Production of Acetonitrile from Acetylene and Ammonia," Org. Synth. Chem., 21(3), 196-204(1963). https://doi.org/10.5059/yukigoseikyokaishi.21.196
  16. Ayari, F., Mhamdi, M., Delahay, G. and Ghorbel, A., "Ammoxidation of Ethylene to Acetonitrile over Chromium or Cobalt Alumina Catalysts Prepared by Sol-gel Method," J. Sol-Gel Sci. Technol., 49, 170-179(2009). https://doi.org/10.1007/s10971-008-1860-7
  17. Rhimi, B., Mhamdi, M., Ghorbel, A., Narayana, V., Martin, K. A., Perez-Cadenas, M., Guerrero-Ruiz, A., "Ammoxidation of Ethylene to Acetonitrile over Vanadium and Molybdenum Supported Zeolite Catalysts Prepared by Solid-state Ion Exchange," J. Mol. Catal. A: Chem., 416, 127-139(2016). https://doi.org/10.1016/j.molcata.2016.02.028
  18. Pelckmans, M., Renders, T., Van de Vyver, S. and Sels, B. F., "Bio-based Amines Through Sustainable Heterogeneous Catalysis," Green Chem., 19, 5303-5331(2017). https://doi.org/10.1039/c7gc02299a
  19. Balat, M. and Balat, H., "Recent Trends in Global Production and Utilization of Bio-ethanol Fuel," Appl. Energy, 86, 2273-2282 (2009). https://doi.org/10.1016/j.apenergy.2009.03.015
  20. Sun, J. and Wang, Y., "Recent Advances in Catalytic Conversion of Ethanol to Chemicals," ACS Catal., 4, 1078-1090(2014). https://doi.org/10.1021/cs4011343
  21. Bhn, S., Imm, S., Neubert, L., Zhang, M., Neumann, H. and Beller, M., "The Catalytic Amination of Alcohols," ChemCatChem, 3, 1853-1864(2011). https://doi.org/10.1002/cctc.201100255
  22. Jeong, Y.-S., Woo, Y., Park, M.-J. and Shin, C.-H., "Characteristics of Si-Y Mixed Oxide Supported Nickel Catalysts for the Reductive Amination of Ethanol to Ethylamines," Catal. Today, 352, 287-297(2020). https://doi.org/10.1016/j.cattod.2019.09.025
  23. Bartholomew, C. H. and Pannell, R. B., "The Stoichiometry of Hydrogen and Carbon-Monoxide Chemisorption on Alumina-Supported and Silica-Supported Nickel," J. Catal., 65, 390-401 (1980). https://doi.org/10.1016/0021-9517(80)90316-4
  24. Zygmuntowicz, J., Wiecinska, P., Miazga, A. and Konopka, K., "Characterization of Composites Containing NiAl2O4 Spinel Phase From Al2O3/NiO and Al2O3/Ni Systems," J. Therm. Anal. Calorim., 125, 1079-1086(2016). https://doi.org/10.1007/s10973-016-5357-2
  25. Gangwar, J., Gupta, B. K., Kumar, P., Tripathi, S. K. and Srivasta, A.K., "Time-resolved and Photoluminescence Spectroscopy of θ-Al2O3 Nanowires for Promising Fast Optical Sensor Applications," Dalton Trans., 43, 17034-17043(2014). https://doi.org/10.1039/c4dt01831a
  26. Gregg, S. J. and Sing, K. S. W., Adsoprtion, Surface Area and Porosity, Academic Press Inc.: London, 1982; ISBN 9780123009500.
  27. Sing, K. S. W., "Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity," Pure & Appl. Chem., 54, 2201-2218(1982). https://doi.org/10.1351/pac198254112201
  28. Groen, J. C., Peffer, L. A. A. and Perez-Ramirez, J., "Pore Size Determination in Modified Micro- and Mesoporous Materials. Pitfalls and Limitations in Gas Adsorption Data Analysis," Microp. Mesop. Mater., 60, 1-17(2003). https://doi.org/10.1016/S1387-1811(03)00339-1
  29. Thommes, M., "Physical Adsorption Characterization of Nanoporous Materials," Chem. Ing. Tech., 82, 1059-1073(2010). https://doi.org/10.1002/cite.201000064
  30. Rafiani, A., Aulia, F., Dwiatmoko, A. A., Rinaldi, N. and Nurhasni, R. R. Widjaya, "Studies on Nickel-based Bimetallic Catalysts for the Hydrodeoxygenation of Stearic Acid," Mater. Sci. Eng., 722, 012001(2020).
  31. Kwak, B.-S., "Characterization of Acid Sites in Zeolite by NH3-TPD," Chem. Ind. Techno., 16(2), 132-139(1998).
  32. Jeong, Y.-S. and Shin, C.-H., "Synthesis and Characterization of High Surface Area of Zirconia: Effect of pH," Korean Chem. Eng. Res., 57, 133-141(2019).
  33. Turek, W. and Krowiak, A., "Evaluation of Oxide Catalysts' Properties Based on Isopropyl Alcohol Conversion," Appl. Catal. A: Gen., 417-418, 102-110(2012). https://doi.org/10.1016/j.apcata.2011.12.030
  34. Hensen, E. J. M., Poduval, D. G., Degirmenci, V., Ligthart, M., Chen, W., Mauge, Fr., Rigutto, M. S., and Rob van Veen, J. A., "Acidity Characterization of Amorphous Silica-alumina," J. Phys. Chem. C, 116, 21416-21429(2012). https://doi.org/10.1021/jp309182f
  35. Pyen, S., Hong, E., Shin, M., Suh, Y.-W. and Shin, C.-H., "Acidity of co-precipitated SiO2-ZrO2 Mixed Oxides in the Acid-catalyzed Dehydrations of Iso-propanol and Formic Acid," Mol. Catal., 448, 71-77(2018). https://doi.org/10.1016/j.mcat.2018.01.031
  36. Chen, B. and Falconer, J. L., "Hydrogenation of Oragnic Oxygenates on Ni/Al2O3 and Ni/SiO2 Catalysts," J. Catal., 147, 72-81 (1994). https://doi.org/10.1006/jcat.1994.1115
  37. Li, C. and Chen, Y.-W., "Temperature-programmed-reduction Studies of Nickel Oxide/alumina Catalysts: Effects of the Preparation Method," Thermochimica Acta, 256, 457-465(1995). https://doi.org/10.1016/0040-6031(94)02177-P
  38. Zangouei, M., Moghaddam, A. Z. and Arasteh, M, "The Influence of Nickel Loading on Reducibility of NiO/Al2O3 Catalysts Synthesized by Sol-gel Method," Chem. Eng. Res. Bull., 14, 97-102(2010).
  39. Le, T. A., Kim, T. W., Lee, S. H. and Park, E. D., "CO and CO2 Methanation over Ni Catalysts Supported on Alumina with Different Crystalline Phases," Korean J. Chem. Eng., 34, 3085-3091 (2017). https://doi.org/10.1007/s11814-017-0257-0
  40. Iwamoto, M., Horikoshi, M., Hashimoto, R., Shimano, K., Sawaguchi, T., Teduka, H., Matsukata, M., "Higher Activity of Ni/γ-Al2O3 over Fe/γ-Al2O3 and Ru/γ-Al2O3 for Catalytic Ammonia Synthesis in Nonthermal Atmospheric-Pressure Plasma of N2 and H2", Catalysts, 10, 590(2020). https://doi.org/10.3390/catal10050590
  41. Marino, F. J., Cerrella, E. G., Duhalde, S., Jobbagy, M. and Laborde, M. A., "Hydrogen from Steam Reforming of Ethanol. Characterization and Performance of Copper-nickel Supported Catalysts," Int. J. Hydrogen Energy, 23(12), 1095-1101(1998). https://doi.org/10.1016/S0360-3199(97)00173-0
  42. Papakonstantinou, P., Zeze, D. A., Klini, A. and McLaughlin, H., "Chemical Bonding and Nanomechanical Studies of Carbon Nitride Films Synthesised by Reactive Pulsed Laser Deposition," Diamond and Related Materials, 10, 119-1114(2001).
  43. Bang, S., Hong, E., Baek, S. W. and Shin, C.-H., "Effect of Acidity on Ni Catalysts Supported on P-modified Al2O3 for Dry Reforming of Methane," Catal. Today, 303, 100-105(2018). https://doi.org/10.1016/j.cattod.2017.08.013
  44. Baiker, A., "Catalytic Amination of Aliphatic Alcohols: Role of Hydrogen as Inhibitor for Catalyst Deactivation," Ind. Eng. Chem. Prod. Res. Dev., 20(4), 615-618(1981). https://doi.org/10.1021/i300004a006
  45. Sewell, G., O'Connor, C. and Steen, E., "Reductive Amination of Ethanol with Silica-supported Cobalt and Nickel Catalysts," Appl. Cata. A: Gen., 125(1), 99-112(1995). https://doi.org/10.1016/0926-860X(95)00010-0
  46. Card, R. J. and Schmitt, J. L., "Gas-phase Synthesis of Nitriles," J. Org. Chem., 46(4), 754-757(1981). https://doi.org/10.1021/jo00317a020
  47. Jeong, Y.-S., An, S. and Shin, C.-H., "Selective Synthesis of Acetonitrile by Reaction of Ethanol with Ammonia over Ni/Al2O3 Catalyst," Korean J. Chem. Eng., 36, 1051-1056(2019). https://doi.org/10.1007/s11814-019-0294-y