• Title/Summary/Keyword: silica fume concrete

Search Result 497, Processing Time 0.024 seconds

An Experimental Study on the Quality Properties of High Strength Concrete by the Replacement Ratio SFFB as Substitutes of Silica-fume (실리카 흄 대체재로 활용 가능한 SFFB의 치환율에 따른 고강도 콘크리트의 품질특성에 관한 실험적 연구)

  • Lim, Byung-Hoon;Lee, Sang-Soo;Yun, Hyun-Do;Yoon, Gil-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.87-92
    • /
    • 2010
  • This study set up 25, 35% for silica fume, SFFB's 2 level and water-combination material ratio, silica fume 10% for substitution ratio, and 4 level of SFFB 5, 10, 15(%) in order to compare and analyze the quality characteristic of ultra high strength concrete according to the substitution ratio of silica fume free binder (SFFB) that can be utilized as a substitute material for silica fume. As a result of an experimentation, the lower water-combination material ratio was, the higher addition ratio of high performance water-reducing agent for securing target liquidity increased, and it indicated the tendency that addition ratio of high performance water-reducing agent decreases because of material characteristic that SFFB has a lower absorptiveness than silica fume. The best strength was shown when SFFB substitution ratio is 10% at compressive strength and when substitution ratio is 15% at tensile strength, and it was indicated that at autogenous shrinkage contraction decreases compared to Plain(SF) regardless of substitution ratio of W/B and SFFB.

An Experimental Study on the Effect on Strength and Internal Structure for UHPC by Silics Fume Replacement Ratio (실리카 퓸의 첨가량에 따른 UHPC의 강도와 내부조직에 미치는 영향에 관한 실험적 연구)

  • Park, Jung-Jun;Kang, Su-Tae;Ryu, Gum-Sung;Koh, Gyung-Taek;Kim, Sung-Wook;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.765-768
    • /
    • 2008
  • Silica fume is a very important gradient in UHPC(Ultra High Performance Concrete) and its amount is normally over 25% of cement(wt.%). But we surely need to comprehend the influence of the amount of silica fume on the UHPC. In this paper, it was investigated how the amount of silica fume influence on the properties such as fluidity, compressive strength, elastic modulus, and flexural strength. Furthermore, it was examined the internal micro structure on UHPC through the test of SEM and MIP. In results, If we properly use silica fume in UHPC, fluidity and strength of UHPC was increased. It can be ascertained through the test of MIP that silica fume effectively increased density of UHPC by posolanic reaction and acting as filler. Especially, In case of Cement to silica fume ratio$0.1{\sim}0.25%$, we can be concluded that UHPC has similar to mechanical property.

  • PDF

Bond Behavior of Carbon Fiber Polymer Reinforced Polymer Rebar in High Strength Concrete with Replacement Ratio of Silica Fume and Metakaolin (실리카퓸 및 메타카올린 치환률에 따른 고강도 콘크리트와 탄소섬유보강 폴리머 보강근의 부착거동)

  • Park, Chan-Gi;Won, Jong-Pil;Kim, Jong-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.5
    • /
    • pp.51-60
    • /
    • 2008
  • This study is to relate the bond characteristics of CFRP rebar in high strength concrete incorporated with silica fume(SF) and metakaolin(MK). An direct bond test were performed to evaluate the effect of SF and MK on bond properties of high-strength concrete and CFRP rebar. The high strength concrete mix included four SF and MK mixes with 0%, 5%, 10% and 15%. Results of bond performance experiment in relation to pullout vs slip behavior of FRP rebar and high strength showed better performance of SF than MK. Also, the results showed the improved bond strength as replacement ratio of SF and MK increased. The relative bond strength in which $1.3{\sim}3.2$ of estimated values were obtained.

A Study on the Properties of Carbonation in the Multi-Component Concrete According to the Substitution Ratios of the Mineral Admixtures (혼화재료 치환에 따른 다성분계콘크리트의 탄산화 특성에 관한 연구)

  • Park, Young-Shin;Park, Jae-Myung;Ahn, Jae-Chul;Lee, Sea-Hyun;Lee, Moon-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.193-196
    • /
    • 2005
  • In this study, the purpose is to suggest the data on mixing ratio which effects on the carbonation of concrete by replacing various admixture such as silica fume, fly ash, slag powder. Thus, we have experimented the accelerated test on the carbonation related to hardened body of the concrete which was admixed by slag powder, silica fume, fly ash and it was cured for 4 weeks in carbonation accelerator after 28 days curing water. The result of this experiment showed that carbonation speed increased highly when admixtures be used to replacing by growing of admixture ratio. especially, the test sample which was replaced with silica fume 15$\%$ and slag powder 40$\%$, was promoted highly to carbonation.

  • PDF

Manufacture of Ultra High Strength Concrete using Industrial by-products (산업부산물을 활용한 초고강도콘크리트의 제조)

  • Moon, Han-Young;Kim, Byoung-Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.3
    • /
    • pp.153-162
    • /
    • 2001
  • This paper presents the fundamental study on rational manufacture of Ultra High Strength(VHS) concrete using industrial by-products as like silica fume, slag and fly ash. In this study, we had tested various mixing cases to manufacture the UHS concrete(target compressive strength : over $1,000kgf/cm^2$) which is easily workable (target slump flow : $60{\pm}10cm$). The main variables are studied: 1) to find the optimum replacement ratio of mineral admixture. 2) to find a rational water-binder ratio and a proper binder content. 3) to find the method for reduction of slump loss. From the test results, it is concluded that the rational mix design can be made by using 40% slag, 10% silica fume. We found that compressive strength of UHS concrete increases according to decreasing W/B ratio but in W/B ratio 18~20%, the difference is vague and the compressive strength does not necessarily increase according to increasing binder content over 700kg.

  • PDF

An Experimental Study on the Mechanical Properties of Fiber Reinforced Cement Composites Utilizing by-Products(II) (산업부산물을 활용한 섬유보강 시멘트 복합체의 역학적 특성에 관한 실험적 연구(II))

  • 박승범;윤의식;조청휘
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.144-149
    • /
    • 1993
  • The results of an experimental study on the manufacture and the mechanical properties of carbon fiber reinforced silica fume.cement composites and light weight fly ash.cement composites are presented in this paper. The CF reinforced silica fume.cement composites using silica fume early strength cement were prepared with Pan-derived or Pitch-derived CF, and Lt. Wt, fly ash.cement composites using fly ash, early strength cement, perlite and a small amount of foaming agent. As the test results show, the flexural strength, toughness and ductility of CF reinforced silica fume .cement composites were remarkably increased by fiber contents. Also, the manufacturing process technology of Lt. Wt. fly ash.cement composites was developed and its optimum mix proportions were proposed. And the compressive and flexural strength of the fly ash.cement composites by hot water cured were improved even more than by moist cured, but are decreased by increasing fly ash replaced ratio for cement.

  • PDF

A Study on the high Strength Mortar using Silica Fume and Fly Ash (실리카 흄과 플라이 애쉬를 이용한 고강도 모르타르에 관한 연구)

  • 김영수;한기성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.18-24
    • /
    • 1993
  • The purpose of this study is to evaluate the effect of substitution of silica fume and fly ash to the mortar mixed with 1:1 of cement/sand ratio on the physical properties. The changes of physical properties were observed through compressive strength, XRD, SEM, and porosity. As result, the compressive strength was excellent when silica fume was replaced with cement in the range of 10%. But the substituion of fly ash was not affect with improvement of compressive strength. Especially , the compressive strength showed the maximum value with 1047kg/$\textrm{cm}^2$ for the substitution of silica fume and fly ash of 10% and 5%, respectively.

  • PDF

Carbonation Characteristic of Self Compacting HVFAC with Silica Fume Content (실리카흄 사용량에 따른 고유동 HVFAC 탄산화 특성)

  • Park, Chan-Kyu;Kim, Han-Junn;Lee, Seung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.429-430
    • /
    • 2010
  • In this study, the carbonation characteristic of highly flowable HVFAC with silica fume content was reported. As results, it appeared that when the silica fume content was $10{\sim}20kg/m^3$, the fludity and dynamic stability were highly improved. And the carbonation coefficient increases exponentially with increasing silica fume content.

  • PDF

The propertise of the compressive strength of ultra-high strength Steel Fiber Reinforced Cementitious Composites with mineral admixtures (광물질 혼화재를 사용한 초고강도 SFRCC의 특성)

  • Park, Jung-Jun;Go, Gyung-Taek;Kang, Su-Tae;Ryu, Gum-Sung;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.473-476
    • /
    • 2005
  • Silica fume has merits of filling the voids, enhancement of reheological chracteristics, prduction of secondary hydrates by pozzolanic reaction in reactive powder concretes. However silica fume has been imported in high-cost in domestic industry, we need to investigate replaceable material in stead of silica fume in a view of economy Therefore, in this paper, in order to investigation replacement of silica fume in ultra-high strength SFRCC we used another mineral admixtures like that fly-ash, blast slag.

  • PDF

Short and Long-Term Properties of High-Performance Concrete Containing Silica Fume for Bridge Deck Overlay (실리카퓸을 혼합한 교면 포장용 고성능 콘크리트의 단기 및 장기 성능 평가)

  • Won Jong-Pil;Seo Jung-Min;Lee Chang-Soo;Park Hae-Kyun;Lee Myeong-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.743-750
    • /
    • 2005
  • High performance concrete containing silica fume for use in bridge deck overlay emerged as a viable type of bridge deck overlay that economic advantage in construction. They have gained acceptance in Europe, America and Canada in a relatively short time due to their low cost. In this study, high-performance concretes containing silica fume were tested and evaluated in the laboratory to assess their applicability for use in bridge deck overlay. It was conducted with experiments of mechanical and durability characteristics in compressive strength, flexural strength, chloride permeability, abrasion resistance, repeated freezing and thawing cycles and deicing salt scaling resistance. Laboratory test result describe that high-performance concrete containing silica fume for bridge deck overlay application shows most outstanding capacity.