• Title/Summary/Keyword: silica composite

Search Result 396, Processing Time 0.023 seconds

An Experimental Study on the Flowing and Strength Properties of Mortar using Low Carbon Inorganic Binder by Sand Replacement Ratio (잔골재 치환율별 저탄소 무기결합재를 사용한 모르타르의 유동 및 강도 특성에 관한 실험적 연구)

  • Bae, Sang-Woo;Lee, Yun-Seong;Lee, Kang-Pil;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.63-64
    • /
    • 2011
  • This study is about the mortar in which fine aggregate is substituted by low-carbon eco-friendly inorganic composite prepared by addition of alkali accelerator in industrial by-products such as blast furnace slag, red mud and silica fume as a replacement for cement. Results of experiments on flow and strength properties in mortar of inorganic composite according to replacement rate of fine aggregate showed that amount of air and table flow decreased as replacement rate of fine aggregate about inorganic composite got higher. Also, it's shown that the compressive strength was the highest at replacement rate 50% of fine aggregate about inorganic composite.

  • PDF

The effect of silica composite properties on DLP-stereolithography based 3D printing (실리카 복합소재의 물성에 따른 DLP 3D printing 적용 연구)

  • Lee, Jin-Wook;Nahm, Sahn;Hwang, Kwang-Taek;Kim, Jin-Ho;Kim, Ung-Soo;Han, Kyu-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.2
    • /
    • pp.54-60
    • /
    • 2019
  • Recently, various composite materials for additive manufacturing are interested to expand the application field of 3D printing. 3D printing technique was mainly developed using polymer, and ceramic materials for 3D printing are still in the early stage of research due to the requirement of high solid content and post treatment process. In this study, silica particles with various diameters were surface treated with silane coupling agent, and synthesized as silica composite with photopolymer to apply DLP 3D printing process. DLP is an additive manufacturing technology, which has high accuracy and applicability of various composite materials. The rheological behavior of silica composite was analyzed with various solid contents. After DLP 3D printing was performed using silica composites, the printing accuracy of the 3D printed specimen was less than about 3 % to compare with digital data and he bending strength was 34.3 MPa at the solid content of 80 wt%.

Effects of SiC Particle Size and Inorganic Binder on Heat Insulation of Fumed Silica-based Heat Insulation Plates

  • Jo, Hye Youn;Oh, Su Jung;Kim, Mi Na;Lim, Hyung Mi;Lee, Seung-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.386-392
    • /
    • 2016
  • Heat insulation plates of fumed silica were prepared by mixing fumed silica, SiC powder and chopped glass fiber by a high speed mixer followed by pressing of the mixture powder in a stainless steel mold of $100{\times}100mm$. Composition of the plates, particle size of SiC, and type of inorganic binder were varied for observation of their contribution to heat insulation of the plate. The plate was installed on the upper portion of an electric furnace the inside temperature of which was maintained at $400^{\circ}C$ and $600^{\circ}C$, for investigation of heat transfer through the plate from inside of the electric furnace to outside atmosphere. Surface temperatures were measured in real time using a thermographic camera. The particle size of SiC was varied in the range of $1.3{\sim}17.5{\mu}m$ and the insulation was found to be most excellent when SiC of $2.2{\mu}m$ was incorporated. When the size of SiC was smaller or larger than $2.2{\mu}m$, the heat insulation effect was decreased. Inorganic binders of alkali silicate and phosphate were tested and the phosphate was found to maintain the heat insulation property while increasing mechanical properties.

A Study on Insulation·Fire Proof Materials Using Silica Aerogels (실리카 에어로젤을 이용한 단열·내화재 개발에 관한 연구)

  • Cho, Myung Ho;Hong, Sungchul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6816-6822
    • /
    • 2015
  • In this study, silica aerogel-glass wool composites were developed for improvement of thermal conductivity and overcoming the water adsorption of glass wool boards. Silica aerogel-glass wool composites were prepared by glass wool and silica aerogel with liquid binder. Mixtures with binder were composed of CMC (carboxymethyl cellulose) and silica aerogel for glass wool board. Silica aerogel-glass wool composite boards were had $0.065g/cm^3$ density by impregnation silica aerogel where from origin glass wool board at $0.048g/cm^3$ density. Thermal conductivity of silica aerogel-glass wool composites were 0.0315 W/mK (up to 7.4% thermal resistance) and fire penetration time came to 362 seconds (up to 2.7 times stronger than origin glass wool board). In addition, hydrophobic aerogel characteristics prevented the adsorption of water onto silica aerogel-glass wool composite boards that was good for lightweight.

The Tensile Characteristics of Carbon and Silica Reinforced Composites Under Elevated Temperature (카본 및 실리카 강화 복합재료의 고온 인장 특성 평가)

  • 김종환;김재훈
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.49-57
    • /
    • 2003
  • This paper presents the tensile characteristics for carbon/epoxy, carbon/phenolic and silica/phenolic composites under elevated temperature, which are considered for vehicle structure or thermal protection materials. The tensile test was conducted with servo-hydraulic testing machine and high temperature furnace, and the mechanical properties such as tensile strength, elastic modulus and Poisson's ratio were evaluated by using high temperature strain gages. Also, they were compared each other with respect to fiber orientation and temperature effect. These test results were used for designing and analyzing some airframe structures with these composites.

SiO2/styrene butadiene rubber-coated poly(ethylene terephthalate) nonwoven composite separators for safer lithium-ion batteries

  • Lee, Jung-Ran;Won, Ji-Hye;Lee, Sang-Young
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.51-56
    • /
    • 2011
  • We develop a new nonwoven composite separator for a safer lithium-ion battery, which is based on coating of silica ($SiO_2$) colloidal particles/styrene-butadiene rubber (SBR) binder to a poly(ethylene terephthalate) (PET) nonwoven support. The $SiO_2$ particles are interconnected by the SBR binder and closely packed in the nonwoven composite separator, which thus allows for the development of unusual porous structure, i.e. highly-connected interstitial voids formed between the $SiO_2$ particles. The PET nonwoven serves as a mechanical support that contributes to suppressing thermal shrinkage of the nonwoven composite separator. The $SiO_2$/SBR content in the nonwoven composite separators plays an important role in determining their separator properties. Porous structure, air permeability, and electrolyte wettability of the nonwoven composite separators, in comparison to a commercialized polyethylene (PE) separator, are elucidated as a function of the $SiO_2$/SBR content. Based on this understanding of the nonwoven composite separators, the effect of $SiO_2$/SBR content on the electrochemical performances such as self-discharge, discharge capacity, and discharge C-rate capability of cells assembled with the nonwoven composite separators is investigated.

The study of Ag coated silica composite preparation by chemical method and their characteristics (화학적 방법에 의한 Ag coated silica 복합체의 제조 및 그 특성에 대한 연구)

  • Park, Sun-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.6
    • /
    • pp.260-266
    • /
    • 2006
  • Well dispersed uniform silver coated silica was prepared by chemical liquid method. The optimum conditions for preparation of the silver coated silica were as follows: alkaline solution, reaction temperature of $100^{\circ}C$, reaction time of 2 hrs, and amount of Ag of 5wt%. It was found that the prepared silver coated silica were far infrared emissivity of $0.916{\sim}0.918$ and antimicrobial effect of 99.9%.

Effect of Additives on the Strength Characteristics of MDF Cement Composites (MDF 시멘트 복합재료의 강도 특성에 미치는 첨가재의 영향)

  • 김태현;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.11
    • /
    • pp.893-899
    • /
    • 1992
  • Composite specimens, which are composed MDF cement of HAC-PVA system were prepared by adding carbon fiber, hydrated silica and SiC powder, and we studied effect of additives on the flexural strength of the composites. All of additives is effective in the improvement of flexural strength of the composite specimens. The size of average pore diameter in the specimens which have high flexural strength property was small. Specimen mixed with hydrated silica was effective in the particle compact property. Flexural strength of carbon fiber reinforced MDF cement composites were improved because of crack deflection of carbon fiber in cementitious matrix.

  • PDF

Morphology and Mechanical Properties through Hydroxyapatite Powder Surface Composite (Hydroxyapatite의 파우더 표면 복합화를 통한 형태 및 기계적 성질에 관한 연구)

  • Kye, Sung Bong;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.27 no.3
    • /
    • pp.299-306
    • /
    • 2016
  • In this study, new hydroxyapatite powder surface composites were investigated for protective effects against ultraviolet rays. Hydroxyapatite (HAp) is biocompatible and does not cause nebula phenomenon on skin. We investigated the surface modification of hydroxyapatite to improve UV block and skin usage. Dimethicone, lauroyl lysine, triethoxycaprylylsilane and silica were used as coating agents for the surface modification of HAp. To prepare the composite complex of the modified surface, the dimethicone, lauroyl lysine and triethoxycaprylylsilane were prepared by a dry process, and silica by a hydrothermal synthesis method. The HAp-silica was chosen as the best composite powder when measuring its sun protection levels. We investigated the characteristics of the surface of HAp-silica by SEM, particle size analyzer and energy dispersive spectrometry (EDS). Additionally, the stability in the formulation, UV block effect, and safety in BB creams were investigated. In conclusion, HAp-silica prepared by the modification of HAp complex surface improved the skin usage and UV block effect by enhancing the white cloudy phenomenon. These results indicate that HAp-silica may be used for UV block cosmetics.

Mechanical Properties of Polymeric Dental Restorative Composites Filled With Silica Treated by Heat at Various Temperatures (다양한 온도에서 열처리시킨 실리카가 충진된 치아수복용 고분자 복합체의 기계적 물성)

  • Kim, Ohyoung;Lee, Jung Soo;Seo, Kitaek;Kang, Doo Whan;Kang, Ho-Jong;Gong, Myoung-Seon;Oh, Myoung-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.549-555
    • /
    • 2005
  • To evaluate the posterior and anterior restoration of polymeric dental restorative composite (PDRC), PDRC was prepared using a silica filler treated by heat at various temperatures. Compressive strength (CS) and diametral tensile strength (DTS) values were investigated to study the effect of a heat-treated silica on the mechanical properties of PDRC using the recommended dental specifications. Both the particle size and specific volume of silica were decreased upon increasing the heat treatment temperature. CS and DTS values of PDRC containing a heat-treated silica showed 1.2 and 1.3 times, respectively, higher than that of the PDRC containing a neat silica. Also, it was found that the lower heat treatment temperature, the better mechanical properties of PDRC were observed because there was less agglomeration between silica particles. Specially, PDRC using a silica treated at $600^{\circ}C$ showed superior mechanical strength.