• 제목/요약/키워드: signature-based detection

Search Result 203, Processing Time 0.029 seconds

A Performance Enhancement Scheme for Signature-based Anti-Viruses (시그니처 기반 안티 바이러스 성능 향상 기법에 대한 연구)

  • Jo, Min Jae;Shin, Ji Sun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.2
    • /
    • pp.65-72
    • /
    • 2015
  • An anti-virus is a widely used solution for detecting malicious software in client devices. In particular, signature-based anti-viruses detect malicious software by comparing a file with a signature of a malicious software. Recently, the number of malicious software dramatically increases and hence it results in a performance degradation issue: detection time of signature-based anti-virus increases and throughput decreases. In this paper, we summarize the research results of signature-based anti-viruses which are focusing on solutions overcoming of performance limitations, and propose a new solution. In particular, comparing our solution to SplitScreen which has been known with the best performance, our solution reduces client-side workload and decreases communication cost.

An Outlier Cluster Detection Technique for Real-time Network Intrusion Detection Systems (실시간 네트워크 침입탐지 시스템을 위한 아웃라이어 클러스터 검출 기법)

  • Chang, Jae-Young;Park, Jong-Myoung;Kim, Han-Joon
    • Journal of Internet Computing and Services
    • /
    • v.8 no.6
    • /
    • pp.43-53
    • /
    • 2007
  • Intrusion detection system(IDS) has recently evolved while combining signature-based detection approach with anomaly detection approach. Although signature-based IDS tools have been commonly used by utilizing machine learning algorithms, they only detect network intrusions with already known patterns, Ideal IDS tools should always keep the signature database of your detection system up-to-date. The system needs to generate the signatures to detect new possible attacks while monitoring and analyzing incoming network data. In this paper, we propose a new outlier cluster detection algorithm with density (or influence) function, Our method assumes that an outlier is a kind of cluster with similar instances instead of a single object in the context of network intrusion, Through extensive experiments using KDD 1999 Cup Intrusion Detection dataset. we show that the proposed method outperform the conventional outlier detection method using Euclidean distance function, specially when attacks occurs frequently.

  • PDF

Network Intrusion Detection with One Class Anomaly Detection Model based on Auto Encoder. (오토 인코더 기반의 단일 클래스 이상 탐지 모델을 통한 네트워크 침입 탐지)

  • Min, Byeoungjun;Yoo, Jihoon;Kim, Sangsoo;Shin, Dongil;Shin, Dongkyoo
    • Journal of Internet Computing and Services
    • /
    • v.22 no.1
    • /
    • pp.13-22
    • /
    • 2021
  • Recently network based attack technologies are rapidly advanced and intelligent, the limitations of existing signature-based intrusion detection systems are becoming clear. The reason is that signature-based detection methods lack generalization capabilities for new attacks such as APT attacks. To solve these problems, research on machine learning-based intrusion detection systems is being actively conducted. However, in the actual network environment, attack samples are collected very little compared to normal samples, resulting in class imbalance problems. When a supervised learning-based anomaly detection model is trained with such data, the result is biased to the normal sample. In this paper, we propose to overcome this imbalance problem through One-Class Anomaly Detection using an auto encoder. The experiment was conducted through the NSL-KDD data set and compares the performance with the supervised learning models for the performance evaluation of the proposed method.

Rotated Object and Angle Detection based on Signature Information (Signature 기반의 회전된 물체의 인식 및 각도 검출 기법)

  • Yoon, Hyun-Sup;Han, Young-Joon;Hahn, Hern-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.837-838
    • /
    • 2008
  • This paper presents a new signature and Fourier descriptor based algorithm for recognizing a rotated object and its rotation angle. Fourier descriptor is used to represent an object using its frequence parameters which are not influenced by rotation. once the object is recognized, the point with the largest auto-correlation coefficient which can be calculated from signature of the object is used to find angle of the object. The outstanding performance of the proposed algorithm has been tested with the test images where more than 10 2D objects arbitrarily located on a table.

  • PDF

Anomaly Detection Analysis using Repository based on Inverted Index (역방향 인덱스 기반의 저장소를 이용한 이상 탐지 분석)

  • Park, Jumi;Cho, Weduke;Kim, Kangseok
    • Journal of KIISE
    • /
    • v.45 no.3
    • /
    • pp.294-302
    • /
    • 2018
  • With the emergence of the new service industry due to the development of information and communication technology, cyber space risks such as personal information infringement and industrial confidentiality leakage have diversified, and the security problem has emerged as a critical issue. In this paper, we propose a behavior-based anomaly detection method that is suitable for real-time and large-volume data analysis technology. We show that the proposed detection method is superior to existing signature security countermeasures that are based on large-capacity user log data according to in-company personal information abuse and internal information leakage. As the proposed behavior-based anomaly detection method requires a technique for processing large amounts of data, a real-time search engine is used, called Elasticsearch, which is based on an inverted index. In addition, statistical based frequency analysis and preprocessing were performed for data analysis, and the DBSCAN algorithm, which is a density based clustering method, was applied to classify abnormal data with an example for easy analysis through visualization. Unlike the existing anomaly detection system, the proposed behavior-based anomaly detection technique is promising as it enables anomaly detection analysis without the need to set the threshold value separately, and was proposed from a statistical perspective.

Freehand Forgery Detection Using Directional Density and Fuzzy Classifier

  • Han, Soowhan;Woo, Youngwoon
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2000.11a
    • /
    • pp.250-255
    • /
    • 2000
  • This paper is concerning off-line signature verification using a density function which is obtained by convolving the signature image with twelve-directional 5$\times$5 gradient masks and the weighted fuzzy mean classifier. The twelve-directional density function based on Nevatia-Babu template gradient is related to the overall shape of a signature image and thus, utilized as a feature set. The weighted fuzzy mean classifier with the reference feature vectors extracted from only genuine signature samples is evaluated for the verification of freehand forgeries. The experimental results show that the proposed system can classify a signature whether genuine or forged with more than 98% overall accuracy even without any knowledge of vaned freehand forgeries.

  • PDF

Extraction of Network Threat Signatures Using Latent Dirichlet Allocation (LDA를 활용한 네트워크 위협 시그니처 추출기법)

  • Lee, Sungil;Lee, Suchul;Lee, Jun-Rak;Youm, Heung-youl
    • Journal of Internet Computing and Services
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Network threats such as Internet worms and computer viruses have been significantly increasing. In particular, APTs(Advanced Persistent Threats) and ransomwares become clever and complex. IDSes(Intrusion Detection Systems) have performed a key role as information security solutions during last few decades. To use an IDS effectively, IDS rules must be written properly. An IDS rule includes a key signature and is incorporated into an IDS. If so, the network threat containing the signature can be detected by the IDS while it is passing through the IDS. However, it is challenging to find a key signature for a specific network threat. We first need to analyze a network threat rigorously, and write a proper IDS rule based on the analysis result. If we use a signature that is common to benign and/or normal network traffic, we will observe a lot of false alarms. In this paper, we propose a scheme that analyzes a network threat and extracts key signatures corresponding to the threat. Specifically, our proposed scheme quantifies the degree of correspondence between a network threat and a signature using the LDA(Latent Dirichlet Allocation) algorithm. Obviously, a signature that has significant correspondence to the network threat can be utilized as an IDS rule for detection of the threat.

Anomaly Detection for IEC 61850 Substation Network (IEC 61850 변전소 네트워크에서의 이상 징후 탐지 연구)

  • Lim, Yong-Hun;Yoo, Hyunguk;Shon, Taeshik
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.5
    • /
    • pp.939-946
    • /
    • 2013
  • This paper proposes normal behavior profiling methods for anomaly detection in IEC 61850 based substation network. Signature based security solutions, currently used primarily, are inadequate for APT attack using zero-day vulnerabilities. Recently, some researches about anomaly detection in control network are ongoing. However, there are no published result for IEC 61850 substation network. Our proposed methods includes 3-phase preprocessing for MMS/GOOSE packets and normal behavior profiling using one-class SVM algorithm. These approaches are beneficial to detect APT attacks on IEC 61850 substation network.

A Study on Distributed Cooperation Intrusion Detection Technique based on Region (영역 기반 분산협력 침입탐지 기법에 관한 연구)

  • Yang, Hwan Seok;Yoo, Seung Jae
    • Convergence Security Journal
    • /
    • v.14 no.7
    • /
    • pp.53-58
    • /
    • 2014
  • MANET can quickly build a network because it is configured with only the mobile node and it is very popular today due to its various application range. However, MANET should solve vulnerable security problem that dynamic topology, limited resources of each nodes, and wireless communication by the frequent movement of nodes have. In this paper, we propose a domain-based distributed cooperative intrusion detection techniques that can perform accurate intrusion detection by reducing overhead. In the proposed intrusion detection techniques, the local detection and global detection is performed after network is divided into certain size. The local detection performs on all the nodes to detect abnormal behavior of the nodes and the global detection performs signature-based attack detection on gateway node. Signature DB managed by the gateway node accomplishes periodic update by configuring neighboring gateway node and honeynet and maintains the reliability of nodes in the domain by the trust management module. The excellent performance is confirmed through comparative experiments of a multi-layer cluster technique and proposed technique in order to confirm intrusion detection performance of the proposed technique.

A Study on Malicious Code Detection Using Blockchain and Deep Learning (블록체인과 딥러닝을 이용한 악성코드 탐지에 관한 연구)

  • Lee, Deok Gyu
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.2
    • /
    • pp.39-46
    • /
    • 2021
  • Damages by malware have recently been increasing. Conventional signature-based antivirus solutions are helplessly vulnerable to unprecedented new threats such as Zero-day attack and ransomware. Despite that, many enterprises have retained signature-based antivirus solutions as part of the multiple endpoints security strategy. They do recognize the problem. This paper proposes a solution using the blockchain and deep learning technologies as the next-generation antivirus solution. It uses the antivirus software that updates through an existing DB server to supplement the detection unit and organizes the blockchain instead of the DB for deep learning using various samples and forms to increase the detection rate of new malware and falsified malware.