• Title/Summary/Keyword: signature-based detection

Search Result 203, Processing Time 0.023 seconds

Fuzzy Cluster Based Diagnosis System for Classifying Computer Viruses (컴퓨터 바이러스 분류를 위한 퍼지 클러스터 기반 진단시스템)

  • Rhee, Hyun-Sook
    • The KIPS Transactions:PartB
    • /
    • v.14B no.1 s.111
    • /
    • pp.59-64
    • /
    • 2007
  • In these days, malicious codes have become reality and evolved significantly to become one of the greatest threats to the modern society where important information is stored, processed, and accessed through the internet and the computers. Computer virus is a common type of malicious codes. The standard techniques in anti-virus industry is still based on signatures matching. The detection mechanism searches for a signature pattern that identifies a particular virus or stain of viruses. Though more accurate in detecting known viruses, the technique falls short for detecting new or unknown viruses for which no identifying patterns present. To cope with this problem, anti-virus software has to incorporate the learning mechanism and heuristic. In this paper, we propose a fuzzy diagnosis system(FDS) using fuzzy c-means algorithm(FCM) for the cluster analysis and a decision status measure for giving a diagnosis. We compare proposed system FDS to three well known classifiers-KNN, RF, SVM. Experimental results show that the proposed approach can detect unknown viruses effectively.

Function partitioning methods for malware variant similarity comparison (변종 악성코드 유사도 비교를 위한 코드영역의 함수 분할 방법)

  • Park, Chan-Kyu;Kim, Hyong-Shik;Lee, Tae Jin;Ryou, Jae-Cheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.2
    • /
    • pp.321-330
    • /
    • 2015
  • There have been found many modified malwares which could avoid detection simply by replacing a sequence of characters or a part of code. Since the existing anti-virus program performs signature-based analysis, it is difficult to detect a malware which is slightly different from the well-known malware. This paper suggests a method of detecting modified malwares by extending a hash-value based code comparison. We generated hash values for individual functions and individual code blocks as well as the whole code, and thus use those values to find whether a pair of codes are similar in a certain degree. We also eliminated some numeric data such as constant and address before generating hash values to avoid incorrectness incurred from them. We found that the suggested method could effectively find inherent similarity between original malware and its derived ones.

Transcriptome Network Analysis Reveals Potential Candidate Genes for Esophageal Squamous Cell Carcinoma

  • Ma, Zheng;Guo, Wei;Niu, Hui-Jun;Yang, Fan;Wang, Ru-Wen;Jiang, Yao-Guang;Zhao, Yun-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.3
    • /
    • pp.767-773
    • /
    • 2012
  • The esophageal squamous cell carcinoma (ESCC) is an aggressive tumor with a poor prognosis. Understanding molecular changes in ESCC should improve identification of risk factors with different molecular subtypes and provide potential targets for early detection and therapy. Our study aimed to obtain a molecular signature of ESCC through the regulation network based on differentially expressed genes (DEGs). We used the GSE23400 series to identify potential genes related to ESCC. Based on bioinformatics we constructed a regulation network. From the results, we could establish that many transcription factors and pathways closely related with ESCC were linked by our method. STAT1 also arose as a hub node in our transcriptome network, along with some transcription factors like CCNB1, TAP1, RARG and IFITM1 proven to be related with ESCC by previous studies. In conclusion, our regulation network provided information on important genes which might be useful in investigating the complex interacting mechanisms underlying the disease.

Malware Analysis Mechanism using the Word Cloud based on API Statistics (API 통계 기반의 워드 클라우드를 이용한 악성코드 분석 기법)

  • Yu, Sung-Tae;Oh, Soo-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.7211-7218
    • /
    • 2015
  • Tens of thousands of malicious codes are generated on average in a day. New types of malicious codes are surging each year. Diverse methods are used to detect such codes including those based on signature, API flow, strings, etc. But most of them are limited in detecting new malicious codes due to bypass techniques. Therefore, a lot of researches have been performed for more efficient detection of malicious codes. Of them, visualization technique is one of the most actively researched areas these days. Since the method enables more intuitive recognition of malicious codes, it is useful in detecting and examining a large number of malicious codes efficiently. In this paper, we analyze the relationships between malicious codes and Native API functions. Also, by applying the word cloud with text mining technique, major Native APIs of malicious codes are visualized to assess their maliciousness. The proposed malicious code analysis method would be helpful in intuitively probing behaviors of malware.

Cooperative Architecture for Centralized Botnet Detection and Management (협업 기반의 중앙집중형 봇넷 탐지 및 관제 시스템 설계)

  • Kwon, Jong-Hoon;Im, Chae-Tae;Choi, Hyun-Sang;Ji, Seung-Goo;Oh, Joo-Hyung;Jeong, Hyun-Cheol;Lee, Hee-Jo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.3
    • /
    • pp.83-93
    • /
    • 2009
  • In recent years, cyber crimes were intended to get financial benefits through malicious attempts such as DDoS attacks, stealing financial information and spamming. Botnets, a network composed of large pool of infected hosts, lead such malicious attacks. The botnets have adopted several evasion techniques and variations. Therefore, it is difficult to detect and eliminate them. Current botnet solutions use a signature based detection mechanism. Furthermore, the solutions cannot cover broad areas enough to detect world-wide botnets. In this study, we suggest an architecture to detect and regulate botnets using cooperative design which includes modules of gathering network traffics and sharing botnet information between ISPs or nations. Proposed architecture is effective to reveal evasive and world-wide botnets, because it does not depend on specific systems or hardwares, and has broadband cooperative framework.

A High-speed Pattern Matching Acceleration System for Network Intrusion Prevention Systems (네트워크 침입방지 시스템을 위한 고속 패턴 매칭 가속 시스템)

  • Kim Sunil
    • The KIPS Transactions:PartA
    • /
    • v.12A no.2 s.92
    • /
    • pp.87-94
    • /
    • 2005
  • Pattern matching is one of critical parts of Network Intrusion Prevention Systems (NIPS) and computationally intensive. To handle a large number of attack signature fattens increasing everyday, a network intrusion prevention system requires a multi pattern matching method that can meet the line speed of packet transfer. In this paper, we analyze Snort, a widely used open source network intrusion prevention/detection system, and its pattern matching characteristics. A multi pattern matching method for NIPS should efficiently handle a large number of patterns with a wide range of pattern lengths and case insensitive patterns matches. It should also be able to process multiple input characters in parallel. We propose a multi pattern matching hardware accelerator based on Shift-OR pattern matching algorithm. We evaluate the performance of the pattern matching accelerator under various assumptions. The performance evaluation shows that the pattern matching accelerator can be more than 80 times faster than the fastest software multi-pattern matching method used in Snort.

A Study on Improving Precision Rate in Security Events Using Cyber Attack Dictionary and TF-IDF (공격키워드 사전 및 TF-IDF를 적용한 침입탐지 정탐률 향상 연구)

  • Jongkwan Kim;Myongsoo Kim
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.9-19
    • /
    • 2022
  • As the expansion of digital transformation, we are more exposed to the threat of cyber attacks, and many institution or company is operating a signature-based intrusion prevention system at the forefront of the network to prevent the inflow of attacks. However, in order to provide appropriate services to the related ICT system, strict blocking rules cannot be applied, causing many false events and lowering operational efficiency. Therefore, many research projects using artificial intelligence are being performed to improve attack detection accuracy. Most researches were performed using a specific research data set which cannot be seen in real network, so it was impossible to use in the actual system. In this paper, we propose a technique for classifying major attack keywords in the security event log collected from the actual system, assigning a weight to each key keyword, and then performing a similarity check using TF-IDF to determine whether an actual attack has occurred.

Comparison of radiomics prediction models for lung metastases according to four semiautomatic segmentation methods in soft-tissue sarcomas of the extremities

  • Heesoon Sheen;Han-Back Shin;Jung Young Kim
    • Journal of the Korean Physical Society
    • /
    • v.80
    • /
    • pp.247-256
    • /
    • 2022
  • Our objective was to investigate radiomics signatures and prediction models defined by four segmentation methods in using 2-[18F]fluoro-2-deoxy-d-glucose positron emission tomography (18F-FDG PET) imaging of lung metastases of soft-tissue sarcomas (STSs). For this purpose, three fixed threshold methods using the standardized uptake value (SUV) and gradient-based edge detection (ED) were used for tumor delineation on the PET images of STSs. The Dice coefficients (DCs) of the segmentation methods were compared. The least absolute shrinkage and selection operator (LASSO) regression and Spearman's rank, and Friedman's ANOVA test were used for selection and validation of radiomics features. The developed radiomics models were assessed using ROC (receiver operating characteristics) curve and confusion matrices. According to the results, the DC values showed the biggest difference between SUV40% and other segmentation methods (DC: 0.55 and 0.59). Grey-level run-length matrix_run-length nonuniformity (GLRLM_RLNU) was a common radiomics signature extracted by all segmentation methods. The multivariable logistic regression of ED showed the highest area under the ROC (receiver operating characteristic) curve (AUC), sensitivity, specificity, and accuracy (AUC: 0.88, sensitivity: 0.85, specificity: 0.74, accuracy: 0.81). In our research, the ED method was able to derive a significant model of radiomics. GLRLM_RLNU which was selected from all segmented methods as a meaningful feature was considered the obvious radiomics feature associated with the heterogeneity and the aggressiveness. Our results have apparently showed that radiomics signatures have the potential to uncover tumor characteristics.

A Study on the Trust Mechanism of Online Voting: Based on the Security Technologies and Current Status of Online Voting Systems (온라인투표의 신뢰 메커니즘에 대한 고찰: 온라인투표 보안기술 및 현황 분석을 중심으로)

  • Seonyoung Shim;Sangho Dong
    • Information Systems Review
    • /
    • v.25 no.4
    • /
    • pp.47-65
    • /
    • 2023
  • In this paper, we investigate how the online voting system can be a trust-based system from a technical perspective. Under four principles of voting, we finely evaluate the existing belief that offline voting is safer and more reliable than online voting based on procedural processes, technical principles. Many studies have suggested the ideas for implementing online voting system, but they have not attempted to strictly examine the technologies of online voting system from the perspective of voting requirements, and usually verification has been insufficient in terms of practical acceptance. Therefore, this study aims to analyze how the technologies are utilized to meet the demanding requirements of voting based on the technologies proven in the field. In addition to general data encryption, online voting requires more technologies for preventing data manipulation and verifying voting results. Moreover, high degree of confidentiality is required because voting data should not be exposed not only to outsiders but also to managers or the system itself. To this end, the security techniques such as Blind Signature, Bit Delegation and Key Division are used. In the case of blockchain-based voting, Mixnet and Zero-Knowledge Proof are required to ensure anonymity. In this study, the current status of the online voting system is analyzed based on the field system that actually serves. This study will enhance our understanding on online voting security technologies and contribute to build a more trust-based voting mechanism.

Application of Integrated Security Control of Artificial Intelligence Technology and Improvement of Cyber-Threat Response Process (인공지능 기술의 통합보안관제 적용 및 사이버침해대응 절차 개선 )

  • Ko, Kwang-Soo;Jo, In-June
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.10
    • /
    • pp.59-66
    • /
    • 2021
  • In this paper, an improved integrated security control procedure is newly proposed by applying artificial intelligence technology to integrated security control and unifying the existing security control and AI security control response procedures. Current cyber security control is highly dependent on the level of human ability. In other words, it is practically unreasonable to analyze various logs generated by people from different types of equipment and analyze and process all of the security events that are rapidly increasing. And, the signature-based security equipment that detects by matching a string and a pattern has insufficient functions to accurately detect advanced and advanced cyberattacks such as APT (Advanced Persistent Threat). As one way to solve these pending problems, the artificial intelligence technology of supervised and unsupervised learning is applied to the detection and analysis of cyber attacks, and through this, the analysis of logs and events that occur innumerable times is automated and intelligent through this. The level of response has been raised in the overall aspect by making it possible to predict and block the continuous occurrence of cyberattacks. And after applying AI security control technology, an improved integrated security control service model was newly proposed by integrating and solving the problem of overlapping detection of AI and SIEM into a unified breach response process(procedure).