• Title/Summary/Keyword: signaling sequence

Search Result 148, Processing Time 0.056 seconds

A Role of YlBud8 in the Regulation of Cell Separation in the Yeast Yarrowia lipolytica

  • Li, Yun-Qing;Xue, Qing-Jie;Yang, Yuan-Yuan;Wang, Hui;Li, Xiu-Zhen
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.141-150
    • /
    • 2019
  • The spatial landmark protein Bud8 plays a crucial role in bipolar budding in the budding yeast Saccharomyces cerevisiae. The unconventional yeast Yarrowia lipolytica can also bud in a bipolar pattern, but is evolutionarily distant from S. cerevisiae. It encodes the protein YALI0F12738p, which shares the highest amino acid sequence homology with S. cerevisiae Bud8, sharing a conserved transmembrane domain at the C-terminus. Therefore, we named it YlBud8. Deletion of YlBud8 in Y. lipolytica causes cellular separation defects, resulting in budded cells remaining linked with one another as cell chains or multiple buds from a single cell, which suggests that YlBud8 may play an important role in cell separation, which is distinct from the function of Bud8 in S. cerevisiae. We also show that the YlBud8-GFP fusion protein is located at the cell membrane and enriched in the bud cortex, which would be consistent with a role in the regulation of cell separation. The coiled-coil domain at the N-terminus of YlBud8 is important to the correct localization and function of YlBud8, as truncated proteins that do not contain the coiled-coil domain cannot rescue the defects observed in $Ylbud8{\Delta}$. This finding suggests that a new signaling pathway controlled by YlBud8 via regulation of cell separation may exist in Y. lipolytica.

The Roles of Epigenetic Reprogramming in Age-related Diseases (노화관련 질환에 대한 후성유전의 역할)

  • Seonhwa Hwang;Gyeongmin Kim;Hye Kyung Kim;Min Hi Park
    • Journal of Life Science
    • /
    • v.33 no.9
    • /
    • pp.736-745
    • /
    • 2023
  • Aging is a complex biological process characterized by a gradual decline in cellular and physiological functions. This natural process is associated with age-related diseases, including Alzheimer's disease, atherosclerosis, and hypogonadism, which are significant health concerns among older individuals and can significantly impact their quality of life. Researchers have found that epigenetic markers play a crucial role in regulating aging and age-related diseases. Epigenetic markers are heritable gene expression alterations that do not change in the DNA sequence. This review focuses on the involvement of various epigenetic marks, such as RNA methylation, DNA methylation, and microRNAs (miRNAs), in regulating gene expression patterns associated with age-related diseases, such as Alzheimer's disease, atherosclerosis, and hypogonadism. These epigenetic alterations can lead to the dysregulation of specific genes and signaling pathways, contributing to the development and progression of Alzheimer's disease, atherosclerosis, and hypogonadism. Understanding the molecular mechanisms behind these epigenetic modifications is essential for both the aging population and individuals seeking ways to promote overall well-being. By gaining deeper insights into how epigenetic marker alteration occurs during aging and age-related diseases, researchers can potentially develop targeted therapeutic strategies to alleviate the impact of these conditions and improve the quality of life for older individuals.

The Role of the Endometrium and Embryo in Human Implantation (인간 착상 과정에 자궁내막과 배아의 역할)

  • Jee, Byung-Chul
    • Development and Reproduction
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2009
  • Implantation itself is governed by an array of endocrine, paracrine and autocrine modulators, of embryonic and maternal origin. Window of implantation is the unique temporal and spatial expression of factors allows the embryo to implant via signaling, appositioning, attachment, and invasion in a specific time frame of $2{\sim}4$ days. When the embryo has arrived in the uterine cavity, a preprogrammed sequence of events occurs, which involves the production and secretion of a multitude of biochemical factors such as cytokines, growth factors, and adhesion molecules by the endometrium and the embryo, thus leading to the formation of a receptive endometrium. Cytokines such as LIF, CSF-1, and IL-1 have all been shown to play important roles in the cascade of events that leads to implantation. Integrin, L-selectin ligands, glycodelin, mucin-1, HB-EGF and pinopodes are involved in appositioning and attachment. The embryo also produces cytokines and growth factors (ILs, VEGF) and receptors for endometrial signals such as LIF, CSF-1, IGF and HB-EGF. The immune system and angiogenesis play an important role. The usefulness of these factors to assess endometrial receptivity and to estimate the prognosis for pregnancy in natural and artificial cycles remains to be proven. Integrins, pinopodes, glycodelin and LIF (from biopsies) are promising candidates; from uterine flushings, glycodelin and LIF are also candidates. The ideal serum marker is not available, but VEGF, glycodelin and CSF have some clinical implications. Further evaluation that includes larger groups of infertile women and fertile controls are needed to elucidate whether their presence in plasma, flushing fluid, or endometrial samples can be used as some kind of a screening tool to assess endometrial function and prognosis for pregnancy before and after artificial reproductive therapy. A better understanding of their function in human implantation may lead to therapeutic intervention, thereby improving the success rate in reproduction treatment. New molecular techniques are becoming available for measuring both embryonic and endometrial changes prior to and during implantation. The use of predictive sets of markers may prove to be more reliable than a single marker. Ultimately, the aim is to use these tools to increase implantation in artificial cycles and consequently improve live-birth rates.

  • PDF

An Enhanced Fast Handover Scheme for Proxy Mobile IPv6 (Proxy Mobile IPv6를 위한 개선된 신속한 핸드오버 방안)

  • Kang, Ju-Eun;Kum, Dong-Won;Cho, You-Ze
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.6
    • /
    • pp.1-10
    • /
    • 2009
  • In a network-based approach such as Proxy Mobile IPv6 (PMIPv6), the serving network controls the mobility management on behalf of a Mobile Node (MN), thereby eliminating a MN from any mobility-related signaling. Although PMIPv6 is being standardized by the IETF NetLMM WG, PMIPv6 still suffers from a lengthy handover latency and the on-the-fly packet loss during a handover. Therefore, this paper presents an enhanced fast handover scheme for PMIPv6. The proposed handover scheme uses the Neighbor Discovery message of IPv6 to reduce the handover latency and packet buffering at the Mobile Access Gateway (MAG) to avoid the on-the-fly packet loss during a handover. In addition, it uses an additional packet buffering at the Local Mobility Anchor (LMA) to solve the packet ordering problem. We evaluate the performance of the proposed handover scheme using both analytical model and simulation. The numerical analysis shows that the proposed scheme has a relatively shorter handover latency. Simulation results demonstrate that the proposed scheme could avoid the on-the-fly packet loss and ensure the packet sequence.

Analysis of Traffic Delays at Scramble Crosswalks Considering Signal Phase Sequence and Traffic Volume (신호현시 순서와 통행량을 고려한 대각선 횡단보도 지체도 분석)

  • Kim, Suji;Lee, Jooyoung;Kwon, Yeongmin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.3
    • /
    • pp.116-128
    • /
    • 2020
  • This study compared the delays of scramble crosswalks and general crosswalks, considering the pedestrian and vehicle traffic at intersections. Based on the signal theory, this study used traffic delays as a measure of feasibility of installing scramble crosswalks. The road structure and length of signal lights were assumed to be specific numbers to calculate the delays in vehicles and pedestrians. With the computed delays, this study compared general crosswalks and scramble crosswalks, and evaluated the feasibility sections on the installation of scramble crosswalks using circular and non-circular signal phases, respectively. The analysis confirmed that the introduction of scramble crosswalks might be more appropriate when the traffic ratio on the main roads is high. In addition, the application of non-circular signal phases is more proper for the operation of scramble crosswalks than circular signal phases. In the non-circular signaling system, however, it was shown that diagonal crosswalks might not be practical if the demand for diagonal crossing is too low. These results are expected to contribute to the development of basic guidelines for assessing the installment feasibility of scramble crosswalks in terms of traffic operation and efficiency.

Inactivation of Brain myo-Inositol Monophosphate Phosphatase by Pyridoxal-5'-Phosphate

  • Kim, Dae-Won;Hong, Joung-Woo;Eum, Won-Sik;Choi, Hee-Soon;Choi, Soo-Hyun;Kim, So-Young;Lee, Byung-Ryong;An, Jae-Jin;Lee, Sun-Hwa;Lee, Seung-Ree;Kwon, Oh-Shin;Kwon, Hyeok-Yil;Cho, Sung-Woo;Lee, Kil-Soo;Park, Jin-Seu;Choi, Soo-Young
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.58-64
    • /
    • 2005
  • Myo-inositol monophosphate phosphatase (IMPP) is a key enzyme in the phosphoinositide cell-signaling system. This study found that incubating the IMPP from a porcine brain with pyridoxal-5'-phosphate (PLP) resulted in a time-dependent enzymatic inactivation. Spectral evidence showed that the inactivation proceeds via the formation of a Schiff's base with the amino groups of the enzyme. After the sodium borohydride reduction of the inactivated enzyme, it was observed that 1.8 mol phosphopyridoxyl residues per mole of the enzyme dimer were incorporated. The substrate, myo-inositol-1-phosphate, protected the enzyme against inactivation by PLP. After tryptic digestion of the enzyme modified with PLP, a radioactive peptide absorbing at 210 nm was isolated by reverse-phase HPLC. Amino acid sequencing of the peptide identified a portion of the PLP-binding site as being the region containing the sequence L-Q-V-S-Q-Q-E-D-I-T-X, where X indicates that phenylthiohydantoin amino acid could not be assigned. However, the result of amino acid composition of the peptide indicated that the missing residue could be designated as a phosphopyridoxyl lysine. This suggests that the catalytic function of IMPP is modulated by the binding of PLP to a specific lysyl residue at or near its substrate-binding site of the protein.

Diversity of vir Genes in Plasmodium vivax from Endemic Regions in the Republic of Korea: an Initial Evaluation

  • Son, Ui-han;Dinzouna-Boutamba, Sylvatrie-Danne;Lee, Sanghyun;Yun, Hae Soo;Kim, Jung-Yeon;Joo, So-Young;Jeong, Sookwan;Rhee, Man Hee;Hong, Yeonchul;Chung, Dong-Il;Kwak, Dongmi;Goo, Youn-Kyoung
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.2
    • /
    • pp.149-158
    • /
    • 2017
  • Variant surface antigens (VSAs) encoded by pir families are considered to be the key proteins used by many Plasmodium spp. to escape the host immune system by antigenic variation. This attribute of VSAs is a critical issue in the development of a novel vaccine. In this regard, a population genetic study of vir genes from Plasmodium vivax was performed in the Republic of Korea (ROK). Eighty-five venous blood samples and 4 of the vir genes, namely vir 27, vir 21, vir 12, and vir 4, were selected for study. The number of segregating sites (S), number of haplotypes (H), haplotype diversity (Hd), DNA diversity (${\pi}$ and ${\Theta}_w$), and Tajima's D test value were conducted. Phylogenetic trees of each gene were constructed. The vir 21 (S=143, H=22, Hd=0.827) was the most genetically diverse gene, and the vir 4 (S=6, H=4, Hd=0.556) was the opposite one. Tajima's D values for vir 27 (1.08530, P>0.1), vir 12 (2.89007, P<0.01), and vir 21 (0.40782, P>0.1) were positive, and that of vir 4 (-1.32162, P>0.1) was negative. All phylogenetic trees showed 2 clades with no particular branching according to the geographical differences and cluster. This study is the first survey on the vir genes in ROK, providing information on the genetic level. The sample sequences from vir 4 showed a clear difference to the Sal-1 reference gene sequence, whereas they were very similar to those from Indian isolates.

PKA-Mediated Regulation of B/K Gene Transcription in PC12 Cells

  • Choi, Mi-Hyun;Kim, Ho-Shik;Choi, Sung-Ho;Kim, Mi-Young;Jang, Yoon-Seong;Jang, Young-Min;Lee, Jeong-Hwa;Jeong, Seong-Whan;Kim, In-Kyung;Kwon, Oh-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.6
    • /
    • pp.333-339
    • /
    • 2005
  • B/K protein is a novel protein containing double C2-like domains. We examined the specific signaling pathway that regulates the transcription of B/K in PC12 cells. When the cells were treated with forskolin ($50{\mu}M$), B/K mRNA and protein levels were time-dependently decreased, reaching the lowest level at 3 or 4 hr, and thereafter returning to the control level. Chemicals such as dibutyryl-cAMP, cellpermeable cyclic AMP (cAMP) analogue and CGS21680, adenosine receptor $A_{2A}$ agonist, also repressed the B/K transcription. However, 1,9-dideoxyforskolin did not show inhibitory effect on B/K transcription, suggesting direct involvement of cAMP in the forskolin-induced inhibition of B/K transcription. Effect of forskolin, dibutyryl cAMP and CGS21680 was significantly reduced in PKA-deficient PC12 cell line (PC12-123.7). One cAMP-response element (CRE)-like sequence (B/K CLS) was found in the promoter region of B/K DNA, and electrophoretic mobility shift assay indicated its binding to CREM and CREB. Forskolin significantly suppressed the promoter activity in CHO-K1 cells transfected with the constructs containing B/K CLS, but not with the construct in which B/K CLS was mutated (AC:TG). Taken together, we suggest that the transcription of B/K gene in PC12 cells may be regulated by PKA-dependent mechanism.

Molecular analysis of alternative transcripts of equine AXL receptor tyrosine kinase gene

  • Park, Jeong-Woong;Song, Ki-Duk;Kim, Nam Young;Choi, Jae-Young;Hong, Seul A;Oh, Jin Hyeog;Kim, Si Won;Lee, Jeong Hyo;Park, Tae Sub;Kim, Jin-Kyoo;Kim, Jong Geun;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.10
    • /
    • pp.1471-1477
    • /
    • 2017
  • Objective: Since athletic performance is a most importance trait in horses, most research focused on physiological and physical studies of horse athletic abilities. In contrast, the molecular analysis as well as the regulatory pathway studies remain insufficient for evaluation and prediction of horse athletic abilities. In our previous study, we identified AXL receptor tyrosine kinase (AXL) gene which was expressed as alternative spliced isoforms in skeletal muscle during exercise. In the present study, we validated two AXL alternative splicing transcripts (named as AXLa for long form and AXLb for short form) in equine skeletal muscle to gain insight(s) into the role of each alternative transcript during exercise. Methods: We validated two isoforms of AXL transcripts in horse tissues by reverse transcriptase polymerase chain reaction (RT-PCR), and then cloned the transcripts to confirm the alternative locus and its sequences. Additionally, we examined the expression patterns of AXLa and AXLb transcripts in horse tissues by quantitative RT-PCR (qRT-PCR). Results: Both of AXLa and AXLb transcripts were expressed in horse skeletal muscle and the expression levels were significantly increased after exercise. The sequencing analysis showed that there was an alternative splicing event at exon 11 between AXLa and AXLb transcripts. 3-dimentional (3D) prediction of the alternative protein structures revealed that the structural distance of the connective region between fibronectin type 3 (FN3) and immunoglobin (Ig) domain was different between two alternative isoforms. Conclusion: It is assumed that the expression patterns of AXLa and AXLb transcripts would be involved in regulation of exercise-induced stress in horse muscle possibly through an $NF-{\kappa}B$ signaling pathway. Further study is necessary to uncover biological function(s) and significance of the alternative splicing isoforms in race horse skeletal muscle.

Isolation and Functional Analysis of the silA Gene That Controls Sexual Development in Response to Light in Aspergillus nidulans (Aspergillus nidulans의 광 조건하 유성분화에 관여하는 silA 유전자의 분리 및 기능분석)

  • Han, Sang-Yong;Ko, Jin-A;Kim, Jong-Hak;Han, Kyu-Yong;Han, Kap-Hoon;Han, Dong-Min
    • The Korean Journal of Mycology
    • /
    • v.36 no.2
    • /
    • pp.189-195
    • /
    • 2008
  • When a homothallic ascomycete Aspergillus nidulans is exposed to visible light, cleistothecial development is inhibited. The light response of development in A. nidulans implies the existence of delicate regulation process including reception and translocation of light signaling and determination of development. Previously, mutants that could develop cleistothecia even in the presence of relatively intensive visible light were isolated and several complementation groups were identified. A gene that was able to complement the silA98 mutation, which was responsible for preferred cleistothecia development under visible light, was isolated from AMA-NotI genomic library. The silA gene retained in the 4.3 kb recovered genomic library DNA has an open reading frame (ORF) consisted of 2,388 bp nucleotides, interrupted by 3 introns and consequently encoding 795 amino acids. The putative SilA carries a ${Zn_2}{Cys_6}$ binuclear cluster motif at N terminus and shows high amino acid sequence similarity to Aro80p of Saccharomyces cerevisiae. Deletion mutants of silA showed a strong induction of sexual development under visible light, indicating that SilA is involved in the negative regulation of sexual development in response to the light.