DOI QR코드

DOI QR Code

Inactivation of Brain myo-Inositol Monophosphate Phosphatase by Pyridoxal-5'-Phosphate

  • Kim, Dae-Won (Department of Genetic Engineering and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Hong, Joung-Woo (The Biochemistry Program, The Ohio State University) ;
  • Eum, Won-Sik (Department of Genetic Engineering and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Choi, Hee-Soon (Department of Genetic Engineering and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Choi, Soo-Hyun (Department of Genetic Engineering and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Kim, So-Young (Department of Genetic Engineering and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Lee, Byung-Ryong (Department of Genetic Engineering and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • An, Jae-Jin (Department of Genetic Engineering and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Lee, Sun-Hwa (Department of Genetic Engineering and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Lee, Seung-Ree (Department of Genetic Engineering and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Kwon, Oh-Shin (Department of Biochemistry, Kyungpook National University) ;
  • Kwon, Hyeok-Yil (Department of Physiology, College of Medicine, Hallym University) ;
  • Cho, Sung-Woo (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine) ;
  • Lee, Kil-Soo (Department of Genetic Engineering and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Park, Jin-Seu (Department of Genetic Engineering and Research Institute for Bioscience and Biotechnology, Hallym University) ;
  • Choi, Soo-Young (Department of Genetic Engineering and Research Institute for Bioscience and Biotechnology, Hallym University)
  • Published : 2005.01.31

Abstract

Myo-inositol monophosphate phosphatase (IMPP) is a key enzyme in the phosphoinositide cell-signaling system. This study found that incubating the IMPP from a porcine brain with pyridoxal-5'-phosphate (PLP) resulted in a time-dependent enzymatic inactivation. Spectral evidence showed that the inactivation proceeds via the formation of a Schiff's base with the amino groups of the enzyme. After the sodium borohydride reduction of the inactivated enzyme, it was observed that 1.8 mol phosphopyridoxyl residues per mole of the enzyme dimer were incorporated. The substrate, myo-inositol-1-phosphate, protected the enzyme against inactivation by PLP. After tryptic digestion of the enzyme modified with PLP, a radioactive peptide absorbing at 210 nm was isolated by reverse-phase HPLC. Amino acid sequencing of the peptide identified a portion of the PLP-binding site as being the region containing the sequence L-Q-V-S-Q-Q-E-D-I-T-X, where X indicates that phenylthiohydantoin amino acid could not be assigned. However, the result of amino acid composition of the peptide indicated that the missing residue could be designated as a phosphopyridoxyl lysine. This suggests that the catalytic function of IMPP is modulated by the binding of PLP to a specific lysyl residue at or near its substrate-binding site of the protein.

Keywords

References

  1. Abdel-Latif, A. A. (1986) Calcium-mobilizing receptor, polyphosphoinositide, and the generation of second messengers. Pharmarcol. Rev. 38, 227-272
  2. Allison, J. H. and Stewart, M. A. (1971) Reduced brain inositol in lithium-treated rats. Nature 233, 267-268 https://doi.org/10.1038/233267a0
  3. Allison, J. H., Blisner, M. E., Holland, W. H., Hipps, P. P. and Sherman, W. R. (1976) Increased brain myo-inositol-1- phosphate in lithium-treated rats. Biochem. Biophys. Res. Commun. 71, 664-670 https://doi.org/10.1016/0006-291X(76)90839-1
  4. Anderson, B. M., Anderson, C. D. and Churchich, J. E. (1996) Inhibition of glutamic dehydrogenase by pyridoxal-5'- phosphate. Biochemistry 5, 2893-2900 https://doi.org/10.1021/bi00873a017
  5. Avissar, S., Schreiber, G., Danon, A. and Belmaker, R. H. (1988) Lithium inhibits adrenergic and cholinergic increases in GTP binding in rat cortex. Nature 331, 440-442 https://doi.org/10.1038/331440a0
  6. Batty, I. and Nahoski, S. R. (1987) Lithium inhibits muscarinicreceptor stimulated inositol terakisphosphate accumulation in rat cerebral cortex. Biochem. J. 247, 797-800
  7. Bello, M. L., Petruzzelli, R., Lucia, R., Ricci, G., Barra, D. and Federici, G. (1992) Chemical modification of human placental glutathione transferase by pyridoxal-5'-phosphate. Biochim. Biophys. Acta 1121, 1384-1389
  8. Berridge, M. J. (1984) Inositol triphosphate and diacylglycerol as second messengers. Biochem. J. 220, 345-360
  9. Berridge, M. J., Downes, C. P. and Hanley, M. R. (1982) Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem. J. 206, 587-595
  10. Bradford, M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  11. Camardella, L., Romano, M., di Prisco, G. and Cancedda, F. D. (1981) Human erythrocytes glucose-6-phosphate dehydrogenase; labeling of a reactive lysyl residue by pyridoxal-5'-phosphate. Biochem. J. 103, 1384-1389
  12. Churchich, J. E. (1965) Energy transfer in protein pyridoxamine-5- phosphate conjugates. Biochemistry 4, 1405-1410 https://doi.org/10.1021/bi00883a027
  13. Diehl, R. E., Whiting, P., Potter, J., Gee, N. S., Ragan, C. I., Linemeyer, D., Schoepfer, R., Bennet, C. and Dixon, R. A. (1990) Cloning and expression of bovine brain inositol monophosphatase. J. Biol. Chem. 265, 5946-5949
  14. Dong, Q. and Fromm, H. J. (1990) Chemical modification of adenylosuccinate synthetase from Escherichia coli by pyridoxal-5-phosphate conjugates. J. Biol. Chem. 265, 6235- 6240
  15. Gee, N. S., Ragan, C. I., Watling, K. J., Aspley, S., Jackson, R. G., Reid, G. G., Gani, D. and Shute, T. K. (1988) The purification and properties of myo-inositol monophosphatase from bovine brain. Biochem. J. 249, 883-889
  16. Godfrey, P. P., McClue, S. J., White, A. M., Wood, A. J. and Grahamesmith, D. G. (1989) Subacute and chronic in vitro lithium treatment inhibits agonist and sodium fluoridestimulated inositol phosphate production in rat cortex. J. Neurochem. 52, 498-506 https://doi.org/10.1111/j.1471-4159.1989.tb09148.x
  17. Gumber, S. C., Loewas, M. W. and Loewas, F. A. (1984) Further studies on myo-inositol-1-phosphatase from the pollen of Lilium longiflorum Thunb. Plant Physiol. 76, 40-44 https://doi.org/10.1104/pp.76.1.40
  18. Hallcher, L. M. and Sherman, W. R. (1980) The effects of lithium ion and other agents on the activity of myo-inositol-1- phosphatase from bovine brain. J. Biol. Chem. 255, 10897- 10901
  19. Itaya, K. and Ui, M. (1966) A new micro method for the colorimetric determination of inorganic phosphate. Clin. Chim. Acta 14, 361-366 https://doi.org/10.1016/0009-8981(66)90114-8
  20. Jeffery, J., Hobbs, L. and Jornvall, H. (1985) Glucose-6-phosphate dehydrogenase from Saccharomyces cerevisiae: characterization of a reactive lysine residue labeled with acetylsalicylic acid. Biochemistry 24, 666-671 https://doi.org/10.1021/bi00324a019
  21. Kwon, H. Y., Shin, H. C., Lee, Y. L., Cho, S.-W. and Choi, S. Y. (1993) Purification and properties of myo-inositol monophosphate phosphatase from porcine brain. Mol. Cells 3, 95-99
  22. Lee, B. R., Bahn, J. H., Jeon, S. G., Ahn, Y. K., Yoon, B. H., Kwon, H. Y., Kwon, O. S. and Choi, S. Y. (1999) Chemical modification of porcine brain myo-inositol monophosphate phosphatase by N-bromosuccinimide J. Biochem. Mol. Biol. 32, 294-298
  23. Majerus, P. W. (1992) Inositol phosphate biochemistry. Annu. Rev. Biochem. 61, 225-250 https://doi.org/10.1146/annurev.bi.61.070192.001301
  24. Matsuyama, T., Soda, K., Fukui, T. and Tanizawa, K. (1992) Leucine dehydrogenase from Bacillus stearothermophilus: identification of active-site lysine by modification with pyridoxal phosphate. J. Biochem. 112, 258-265
  25. Mauck, J. L., Wong, Y. H. and Sherman, W. R. (1980) L-myoinositol phosphate synthetase from bovine testis: Purification to homogeneity and partial characterization. Biochemistry 19, 3623-3629 https://doi.org/10.1021/bi00556a031
  26. McAllister, G., Whiting, P. J., Hammond, E. A., Knowles, M. R., Atack, T. R., Bailey, F. J., Maigetler, R. and Ragan, C. I. (1992a) Bovine inositol monophosphatase modification, identification and mutagenesis of reactive cystein residues. Biochem. J. 285, 461-468
  27. McAllister, G., Whiting, P., Hammond, E. A., Knowles, M. R., Atack, J. R., Bailey, F. J., Maigetter, R. and Ragan, C. I. (1992b) cDNA cloning of human and rat brain myo-inositol monophosphatase. Expression and characterization of the human recombinant enzyme. Biochem. J. 284, 749-754
  28. Meek, J. L., Rice, T. J. and Anton, E. (1988) Rapid purification of inositol monophosphate phosphatase from beef brain. Biochem. Biophys. Res. Commun. 156, 143-148 https://doi.org/10.1016/S0006-291X(88)80816-7
  29. Sherman, W. R., Leavitt, A. L., Honcher, M. P., Hallcher, L. M. and Phillips, B. E. (1981) Evidence that lithium alters phosphoinositides metabolism: Chronic administration elevates primarily D-myo-inositol-1-phosphate in cerebral cortex of the rat. J. Neurochem. 36, 1947-1951 https://doi.org/10.1111/j.1471-4159.1981.tb10819.x
  30. Sjoholt, G., Molven, A., Lovlie, R., Wilcos, A., Sikela, J. M. and Steen, V. M. (1997) Genomic structure and chromosomal localization of a human myo-inositol monophosphatase gene (IMPP). Genomics 45, 113-122 https://doi.org/10.1006/geno.1997.4862
  31. Takimoto, K., Okada, M., Matsuda, Y. and Nakagawa, H. (1985) Purification and properties of myo-inositol-1-phosphatase from rat brain. J. Biochem. (Tokyo) 98, 363-370

Cited by

  1. Expression, purification and characterization of BGERII: a novel pan-TGF  inhibitor vol.21, pp.7, 2008, https://doi.org/10.1093/protein/gzn023
  2. Co-expression of parathyroid hormone related protein and TGF-beta in breast cancer predicts poor survival outcome vol.15, pp.1, 2015, https://doi.org/10.1186/s12885-015-1873-x
  3. Lactoferrin Induces the Synthesis of Vitamin B6 and Protects HUVEC Functions by Activating PDXP and the PI3K/AKT/ERK1/2 Pathway vol.20, pp.3, 2019, https://doi.org/10.3390/ijms20030587