• 제목/요약/키워드: signaling chemical

검색결과 233건 처리시간 0.035초

Effect of Differential Thermal Drying Conditions on the Immunomodulatory Function of Ginger

  • Lee, Ji Su;Kim, Bomi;Kim, Jae Hwan;Jeong, Minju;Lim, Seokwon;Byun, Sanguine
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권7호
    • /
    • pp.1053-1060
    • /
    • 2019
  • Thermal drying is a common process used in the food industry for the modification of agricultural products. However, while various studies have investigated the alteration in physiochemical properties and chemical composition after drying, research focusing on the relationship between different dehydration conditions and bioactivity is scarce. In the current study, we prepared dried ginger under nine different conditions by varying the processing time and temperature and compared their immunomodulatory effects. Interestingly, depending on the drying condition, there were significant differences in the immunestimulating activity of the dried ginger samples. Gingers processed at $50^{\circ}C$ 1h displayed the strongest activation of macrophages measured by $TNF-{\alpha}$ and IL-6 levels, whereas, freezedried or $70^{\circ}C$- and $90^{\circ}C$-dried ginger showed little effect. Similar results were recapitulated in primary bone marrow-derived macrophages, further confirming that different dehydration conditions can cause significant differences in the immune-stimulating activity of ginger. Induction of ERK, p38, and JNK signaling was found to be the major underlying molecular mechanism responsible for the immunomodulatory effect of ginger. These results highlight the potential to improve the bioactivity of functional foods by selectively controlling processing conditions.

Development of protein tyrosine phosphatase 1B (PTPIB) Inhibitors from marine sources and other natural products-Future of Antidiabetic Therapy : A Systematic Review

  • KAUR, Kulvinder Kochar;ALLAHBADIA, Gautam;SINGH, Mandeep
    • 식품보건융합연구
    • /
    • 제5권3호
    • /
    • pp.21-33
    • /
    • 2019
  • The incidence of both obesity and Type 2 Diabetes Mellitus( DM) is increasing proportionately so that causes of deaths from these has overtaken from that of malnourishment. Hence it has been recommended to treat the 2 in parallel considering the role of diabesity on health. Important causes of T2DM are insulin resistance (IR) and /or inadequate insulin secretion. Protein tyrosine phosphatase 1B(PTPIB) has a negative impact in insulin signaling pathways and hence plays crucial role inT2DM,since its overexpression might induce IR. Thus PTPIB is considered a therapeutic target for both obesity and T2DM, there has been a search for novel ,promising natural inhibitors. We conducted a pubmed search for articles related to PTPIB inhibitors from natural causes be it marine sources or other natural sources. Out of 988 articles we selected 100 articles for review. Thus various bioactive molecules isolated from marine organisms that can acts as PTPIB Inhibitors and thus possess antidiabetic activity both in vitro/ in vivo studies ,besides products from fruits like Chinese raspberry or curcumin used as routine spices are described with their chemical classes, structure-activity relationships and potency as assessed by IC 50 values are discussed. More work is required to make this a reality.

Activation of Nrf2 by sulfuretin stimulates chondrocyte differentiation and increases bone lengths in zebrafish

  • Seo-Hyuk Chang;Hoi-Khoanh Giong;Da-Young Kim;Suji Kim;Seungjun Oh;Ui Jeong Yun;Jeong-Soo Lee;Kye Won Park
    • BMB Reports
    • /
    • 제56권9호
    • /
    • pp.496-501
    • /
    • 2023
  • Elongation of most bones occur at the growth plate through endochondral ossification in postnatal mammals. The maturation of chondrocyte is a crucial factor in longitudinal bone growth, which is regulated by a complex network of paracrine and endocrine signaling pathways. Here, we show that a phytochemical sulfuretin can stimulate hypertrophic chondrocyte differentiation in vitro and in vivo. We found that sulfuretin stabilized nuclear factor (erythroid-derived 2)-like 2 (Nrf2), stimulated its transcriptional activity, and induced expression of its target genes. Sulfuretin treatment resulted in an increase in body length of zebrafish larvae and induced the expression of chondrocyte markers. Consistently, a clinically available Nrf2 activator, dimethyl fumarate (DMF), induced the expression of hypertrophic chondrocyte markers and increased the body length of zebrafish. Importantly, we found that chondrocyte gene expression in cell culture and skeletal growth in zebrafish stimulated by sulfuretin were significantly abrogated by Nrf2 depletion, suggesting that such stimulatory effects of sulfuretin were dependent on Nrf2, at least in part. Taken together, these data show that sulfuretin has a potential use as supporting ingredients for enhancing bone growth.

Effects of Oxya chinensis sinuosa hot water extract on benign prostatic hyperplasia in LNCaP cells

  • Hyun Jung Lim;Sohyun Park;Ra-Yeong Choi;In-Woo Kim;Minchul Seo;Hae Yong Kweon;Joon Ha Lee
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제47권2호
    • /
    • pp.140-146
    • /
    • 2023
  • In recent years, the number of patients with benign prostatic hyperplasia (BPH), a condition that commonly occurs in elderly men, has increased due to aging and the adoption of western dietary habits. Treatment with chemical drugs, such as finasteride or dutasteride, can cause side effects such as erectile dysfunction or sexual problems. This necessitates the development of remedies using natural substances derived from food ingredients. In this study, we investigated the inhibitory effects of Oxya chinensis sinuosa hot water extract (OCH) on BPH production in LNCaP cells, a hormone-dependent prostate cancer cell line. We found that the mRNA expression of androgen receptor (AR), prostate specific antigen (PSA), and, 5α-reductases 1, and 2 decreased following treatment with OCH. Furthermore, OCH treatment resulted in reduced protein expression of BPH regulators, such as AR. Collectively, these results suggest that OCH exerts a beneficial effect on BPH by inhibiting the AR signaling pathway, indicating the potential of OCH as a therapeutic agent for the prevention and treatment of BPH.

1,3-Dibenzyl-5-Fluorouracil Prevents Ovariectomy-Induced Bone Loss by Suppressing Osteoclast Differentiation

  • Hyoeun Jeon;Jungeun Yu;Jung Me Hwang;Hye-Won Park;Jiyeon Yu;Zee-Won Lee;Taesoo Kim;Jaerang Rho
    • IMMUNE NETWORK
    • /
    • 제22권5호
    • /
    • pp.43.1-43.12
    • /
    • 2022
  • Osteoclasts (OCs) are clinically important cells that resorb bone matrix. Accelerated bone destruction by OCs is closely linked to the development of metabolic bone diseases. In this study, we screened novel chemical inhibitors targeting OC differentiation to identify drug candidates for metabolic bone diseases. We identified that 1,3-dibenzyl-5-fluorouracil, also named OCI-101, is a novel inhibitor of osteoclastogenesis. The formation of multinucleated OCs is reduced by treatment with OCI-101 in a dose-dependent manner. OCI-101 inhibited the expression of OC markers via downregulation of receptor activator of NF-κB ligand and M-CSF signaling pathways. Finally, we showed that OCI-101 prevents ovariectomy-induced bone loss by suppressing OC differentiation in mice. Hence, these results demonstrated that OCI-101 is a good drug candidate for treating metabolic bone diseases.

AGS 위암세포에서 Akt/GSK-3β/p53 신호경로 조절을 통한 벌사상자 에탄올 추출물의 G1 Cell Cycle Arrest 유도 효과 (Ethanol Extract from Cnidium monnieri (L.) Cusson Induces G1 Cell Cycle Arrest by Regulating Akt/GSK-3β/p53 Signaling Pathways in AGS Gastric Cancer Cells)

  • 임은경;김은지;김보민;김상용;하성호;김영민
    • 한국식품영양과학회지
    • /
    • 제46권4호
    • /
    • pp.417-425
    • /
    • 2017
  • 벌사상자는 여성의 생식기 질환이나 화농성 피부염에 주로 사용되어온 한약재로, 최근 들어 암과 관련된 연구가 많이 이루어짐에 따라 벌사상자의 항암 효과에 대한 관심이 높아지고 있다. 벌사상자의 대표적인 성분인 osthole, xanthotoxol 등은 벤젠고리 화합물로 에탄올과 같은 유기용매에 잘 용해된다. 이에 따라 본 연구에서는 AGS 위암세포에서 벌사상자 에탄올 추출물(CME)에 대한 세포주기 정지 유도 효과를 확인하고자 하였다. CME 처리에 의한 AGS 위암세포의 증식 억제 유도 효과 및 세포독성 효과를 확인하기 위하여 MTT assay와 LDH release assay를 실시한 결과, 농도 및 시간 의존적으로 세포생존율이 감소하였으며, 농도 의존적인 세포독성 효과를 확인하였다. 또한, CME의 농도가 증가할수록 AGS 위암세포의 형태학적 변화가 관찰되었다. 이러한 세포증식 억제 유도 효과가 세포주기 정지에 의한 것인지 확인하기 위하여 CME를 농도별로 24시간 동안 처리한 후 세포주기를 측정하였다. 그 결과 G1기의 세포가 농도 의존적으로 증가함을 확인하였다. 그리고 CME의 처리가 세포주기와 관련된 단백질에 미치는 영향을 알아보기 위하여 western blot analysis를 실시하여 G1기 세포주기 정지와 관련된 신호 단백질들의 발현 변화를 확인하였다. 그 결과 CME의 처리가 세포 증식과 분열에 중요한 역할을 하는 p-Akt와 p-GSK-$3{\beta}$의 발현을 저해하는 것을 확인하였고, 이에 따라 p53의 발현과 활성이 증가하여 p21의 발현이 증가함을 확인하였다. 또한, p21의 증가에 따른 cyclin E의 발현 감소와 CDK2의 비활성화 상태인 p-CDK(T14), p-CDK(Y15)의 발현 증가를 확인하였다. 이와 같은 CME의 세포주기 억제 유도 효과가 일어나는 신호경로를 확인하기 위하여 LY294002(PI3K/Akt 저해제), BIO(GSK-$3{\beta}$ 저해제), Pifithrin-${\alpha}$(p53 저해제)를 CME와 각각 또는 병행 처리한 후 MTT assay, 세포주기 측정, western blot analysis를 진행하였다. 그 결과 LY294002의 처리는 CME 처리군과 유사하게 세포생존율을 저해시키고 G1기 정지를 유도했으며, 세포주기 단백질을 조절하였다. 또한, GSK-$3{\beta}$와 p53 저해제를 처리하였을 때 CME를 병행 처리했음에도 불구하고 세포증식 억제나 G1기 정지와 같은 항암 효과가 나타나지 않았으며, 관련 신호경로 단백질의 변화도 관찰되지 않았다. 이러한 결과는 CME의 처리가 Akt/GSK-$3{\beta}$/p53 신호경로를 조절하여 cyclin E의 발현을 감소시키고 CDK2의 활성을 억제함으로써 G1기 세포주기 정지를 유도함을 확인하였다.

Ligand Based Pharmacophore Identification and Molecular Docking Studies for Grb2 Inhibitors

  • Arulalapperumal, Venkatesh;Sakkiah, Sugunadevi;Thangapandian, Sundarapandian;Lee, Yun-O;Meganathan, Chandrasekaran;Hwang, Swan;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1707-1714
    • /
    • 2012
  • Grb2 is an adapter protein involved in the signal transduction and cell communication. The Grb2 is responsible for initiation of kinase signaling by Ras activation which leads to the modification in transcription. Ligand based pharmacophore approach was applied to built the suitable pharmacophore model for Grb2. The best pharmacophore model was selected based on the statistical values and then validated by Fischer's randomization method and test set. Hypo1 was selected as a best pharmacophore model based on its statistical values like high cost difference (182.22), lowest RMSD (1.273), and total cost (80.68). It contains four chemical features, one hydrogen bond acceptor (HBA), two hydrophobic (HY), and one ring aromatic (RA). Fischer's randomization results also shows that Hypo1 have a 95% significant level. The correlation coefficient of test set was 0.97 which was close to the training set value (0.94). Thus Hypo1 was used for virtual screening to find the potent inhibitors from various chemical databases. The screened compounds were filtered by Lipinski's rule of five, ADMET and subjected to molecular docking studies. Totally, 11 compounds were selected as a best potent leads from docking studies based on the consensus scoring function and critical interactions with the amino acids in Grb2 active site.

Inhibition of Microbial Quorum Sensing Mediated Virulence Factors by Pestalotiopsis sydowiana

  • Parasuraman, Paramanantham;Devadatha, B;Sarma, V. Venkateswara;Ranganathan, Sampathkumar;Ampasala, Dinakara Rao;Reddy, Dhanasekhar;Kumavath, Ranjith;Kim, In-Won;Patel, Sanjay K.S.;Kalia, Vipin Chandra;Lee, Jung-Kul;Siddhardha, Busi
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권4호
    • /
    • pp.571-582
    • /
    • 2020
  • Quorum sensing (QS)-mediated infections cause severe diseases in human beings. The control of infectious diseases by inhibiting QS using antipathogenic drugs is a promising approach as antibiotics are proving inefficient in treating these diseases. Marine fungal (Pestalotiopsis sydowiana PPR) extract was found to possess effective antipathogenic characteristics. The minimum inhibitory concentration (MIC) of the fungal extract against test pathogen Pseudomonas aeruginosa PAO1 was 1,000 ㎍/ml. Sub-MIC concentrations (250 and 500 ㎍/ml) of fungal extract reduced QS-regulated virulence phenotypes such as the production of pyocyanin, chitinase, protease, elastase, and staphylolytic activity in P. aeruginosa PAO1 by 84.15%, 73.15%, 67.37%, 62.37%, and 33.65%, respectively. Moreover, it also reduced the production of exopolysaccharides (74.99%), rhamnolipids (68.01%), and alginate (54.98%), and inhibited the biofilm formation of the bacteria by 90.54%. In silico analysis revealed that the metabolite of P. sydowiana PPR binds to the bacterial QS receptor proteins (LasR and RhlR) similar to their respective natural signaling molecules. Cyclo(-Leu-Pro) (CLP) and 4-Hydroxyphenylacetamide (4-HPA) were identified as potent bioactive compounds among the metabolites of P. sydowiana PPR using in silico approaches. The MIC values of CLP and 4-HPA against P. aeruginosa PAO1 were determined as 250 and 125 ㎍/ml, respectively. All the antivirulence assays were conducted at sub-MIC concentrations of CLP (125 ㎍/ml) and 4-HPA (62.5 ㎍/ml), which resulted in marked reduction in all the investigated virulence factors. This was further supported by gene expression studies. The findings suggest that the metabolites of P. sydowiana PPR can be employed as promising QS inhibitors that target pathogenic bacteria.

Induction of Nrf2/ARE-mediated cytoprotective genes by red ginseng oil through ASK1-MKK4/7-JNK and p38 MAPK signaling pathways in HepG2 cells

  • Bak, Min Ji;Truong, Van-Long;Ko, Se-Yeon;Nguyen, Xuan Ngan Giang;Jun, Mira;Hong, Soon-Gi;Lee, Jong-Won;Jeong, Woo-Sik
    • Journal of Ginseng Research
    • /
    • 제40권4호
    • /
    • pp.423-430
    • /
    • 2016
  • Background: The induction of cellular defensive genes such as phase II detoxifying and antioxidant enzymes is a highly effective strategy for protection against carcinogenesis as well as slowing cancer development. Transcription factor Nrf2 (nuclear factor E2-related factor 2) is responsible for activation of phase II enzymes induced by natural chemopreventive compounds. Methods: Red ginseng oil (RGO) was extracted using a supercritical $CO_2$ extraction system and chemical profile of RGO was investigated by GC/MS. Effects of RGO on regulation of the Nrf2/antioxidant response element (ARE) pathway were determined by ARE-luciferase assay, western blotting, and confocal microscopy. Results: The predominant components of RGO were 9,12-octadecadienoic acid (31.48%), bicyclo[10.1.0] tridec-1-ene (22.54%), and 22,23-dihydrostigmasterol (16.90%). RGO treatment significantly increased nuclear translocation of Nrf2 as well as ARE reporter gene activity, leading to upregulation of heme oxygenase-1 and NAD(P)H:quinone oxidoreductase 1. Phosphorylation of the upstream kinases such as apoptosis signal-regulating kinase (ASK)1, mitogen-activated protein kinase (MAPK) kinase (MKK)4/7, c-Jun N-terminal kinase (JNK), and p38 MAPK were enhanced by treatment with RGO. In addition, RGO-mediated Nrf2 expression and nuclear translocation was attenuated by JNK inhibitor SP600125 and p38 MAPK inhibitor SB202190. Conclusion: RGO could be used as a potential chemopreventive agent, possibly by induction of Nrf2/ARE-mediated phase II enzymes via ASK1-MKK4/7-JNK and p38 MAPK signaling pathways.

탈리 신호전달의 메커니즘에 대한 최신 연구동향 및 미래 농업의 적용 방안 (Plant abscission: An age-old yet ongoing challenge in future agriculture)

  • 이진수
    • Journal of Plant Biotechnology
    • /
    • 제50권
    • /
    • pp.142-154
    • /
    • 2023
  • 식물의 탈리(abscission)는 기관 혹은 조직이 분리되는 현상으로, 필요 없어진 기관을 떨어트리거나 종자와 과실을 널리 퍼트리기 위해 자연이 선택해온 전략이다. 하지만 농업적 관점에서 이러한 종자나 과실의 탈리는 작물의 생산성과 상품의 품질을 떨어트리는 주요 요인이 될 수 있다. 때문에 전통 농업의 작물화 과정을 통해 탈리가 저해된 돌연변이들이 선택되어 교배되면서 자연적으로 익은 과일이나 종자를 떨어트리지 않는 현대의 벼, 토마토, 유채, 콩과 같은 주요 작물 품종을 얻을 수 있었다. 한 세기 가량 진행된 quantitative trait loci (QTLs) 연구 및 애기장대에서의 유전학적・분자생물학적 연구를 통해 탈리 활성에 관여하는 다양한 세포생물학적 메커니즘과 신호전달 경로 및 전사조절인자가 규명되었다. 뿐만 아니라, 식물 생장에 관여하는 다양한 호르몬 신호전달 역시 탈리 활성을 조절하는 데에 중요함이 밝혀졌으며, 이들 호르몬과 신호전달에 작용하는 여러 케미칼 처리제가 개발되어 작물의 수확량을 증대시키는데 사용되어왔다. 본 리뷰에선 최근까지 밝혀진 탈리 활성에 관여하는 신호전달과 주요 조절인자에 대해 소개하고, smart farm 시대의 미래농업에 적용되어야할 작물의 탈리 조절 메커니즘 연구가 무엇일지, 또 이를 위해 모델시스템에서 앞으로 더 연구되어야 할 것이 무엇인지에 대해 논의하고자 한다.