• Title/Summary/Keyword: signal traffic

Search Result 1,002, Processing Time 0.02 seconds

Implementation of A Vibration Notification System to Support Driving for Drivers with Cognitive Delay Impairment

  • Gyu-Seok Lee;Tae-Sung Kim;Myeong-Chul Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.4
    • /
    • pp.115-123
    • /
    • 2024
  • In this paper, we propose a vibration notification system that combines navigation information and wearable bands to ensure safe driving for the transportation vulnerable. This system transmits navigation driving information to a linked application, converts it into a vibration signal, and provides notifications through a wearable band. Existing navigation systems focus on providing route guidance and location information, so the driver's concentration is dispersed, and safety and convenience are deteriorated, especially for those with mobility impairments, due to standard vision and delayed recognition of stimuli, resulting in an increasingly high traffic accident rate. To solve this problem, navigation driving information is converted into vibration signals through a linked application, and vibration notifications for events, left turns, right turns, and speeding are provided through a wearable band to ensure driver safety and convenience. In the future, we will use cameras and vehicle sensors to increase awareness of safety inside and outside the vehicle by adding a function that provides notifications with vibration and LED when the vehicle approaches or recognizes an object, and we will continue to conduct research to build a safer driving environment. plan.

Algorithm Development for Extract O/D of Air Passenger via Mobile Telecommunication Bigdata (모바일 통신 빅데이터 기반 항공교통이용자 O/D 추출 알고리즘 연구)

  • Bumchul Cho;Kihun Kwon
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.1-13
    • /
    • 2023
  • Current analysis of air passengers mainly relies on statistical methods, but there are limitations in analyzing detailed aspects such as travel routes, number of regional passengers and airport access times. However, with the advancement of big data technology and revised three data acts, big data-based transportation analysis has become more active. Mobile communication data, which can precisely track the location of mobile phone terminals, can serve as valuable analytical data for transportation analysis. In this paper, we propose a air passenger Origin/Destination (O/D) extraction algorithm based on mobile communication data that overcomes the limitations of existing air transportation user analysis methods. The algorithm involves setting airport signal detection zones at each airport and extracting air passenger based on their base station connection history within these zones. By analyzing the base station connection data along the passenger's origin-destination paths, we estimate the entire travel route. For this paper, we extracted O/D information for both domestic and international air passengers at all domestic airports from January 2019 to December 2020. To compensate for errors caused by mobile communication service provider market shares, we applied a adjustment to correct the travel volume at a nationwide citizen level. Furthermore correlation analysis was performed on O/D data and aviation statistics data for air traffic users based on mobile communication data to verify the extracted data. Through this, there is a difference in the total amount (4.1 for domestic and 4.6 for international), but the correlation is high at 0.99, which is judged to be useful. The proposed algorithm in this paper enables a comprehensive and detailed analysis of air transportation users' travel behavior, regional/age group ratios, and can be utilized in various fields such as formulating airport-related policies and conducting regional market analysis.