감성은 인간의 삶과 밀접한 관련을 가지고 있으며 이는 집중력, 학습능력 등 많은 부분에 영향을 주어 다양한 행동 패턴을 가지게 한다. 따라서 본 논문의 목적은 부정감성을 구분하기 위하여 생체신호를 기반으로 주요한 특징들을 추출하는 것이다. 이를 위해 본 논문에서는 심전도, 뇌파, 피부 온도와 피부전도도를 기반으로 생체신호를 측정한 후, 선형분류기와 유전 알고리즘의 조합으로 정확하고 신속한 알고리즘 개발하고, 주요 특징을 추출하였다. 그 결과, 알고리즘은 최대 96.4%의 정확도를 가짐을 확인할 수 있었고, 추출된 파라미터는 심박변이도의 Mean, RMSSD, NN50과 뇌파의 전두엽 영역에서의 ${\sigma}$파와 ${\alpha}$파의 주파수 파워, 두정엽 영역에서 ${\alpha}$파, ${\beta}$파, ${\gamma}$파와 의 주파수 파워, 그리고 피부온도의 평균과 표준편차 값이었다. 이에 따라 각 각의 생체신호를 기반으로 한 추출 된 특징들은 부정감성의 분류에 있어 중요한 역할을 함을 확인할 수 있었다.
Monitoring technology of machining has a long history since unmanned machining was introduced. Despite the long history, many researchers have presented new approaches continuously in this area. Sound based machine fault diagnosis is the process consisting of detecting automatically the damages that affect the machines by analyzing the sounds they produce during their operating time. The collected sound is corrupted by the surrounding work environment. Therefore, the most important part of the diagnosis is to find hidden elements inside the data that can represent the error pattern. This paper presents a feature extraction methodology that combines various digital signal processing and pattern recognition methods for the analysis of the sounds produced by tools. The magnitude spectrum of the sound is extracted using the Fourier analysis and the band-pass filter is applied to further characterize the data. Statistical functions are also used as input to the nonlinear classifier for the final response. The results prove that the proposed feature extraction method accurately captures the hidden patterns of the sound generated by the tool, unlike the conventional features. Therefore, it is shown that the proposed method can be applied to a sound based automatic diagnosis system.
영상분할은 영상 처리 및 패턴 인식에서 매우 어려운 전처리 과정 중 하나이다. 일반적으로는 단순하고 구현이 쉽기 때문에 OTSU의 방법이 많이 사용되고 있지만, 영상의 히스토그램이 단일 분포를 갖거나 단일 분포에 가까울 경우에는 영상 분할이 정확히 되지 못한다. 또한, 만일 표적이 영상에 비해서 소형인 경우 표적의 히스토그램 분포가 작아져서 단일 분포에 가까워진다. 본 논문에서는 소형 표적 검출을 위한 개선된 영상 분할 기법을 제안하였다. 단일 분포 히스토그램의 단점을 극복하기 위하여 배경 히스토그램의 영향을 감소시키는 기법을 적용하였으며, SNR을 높이기 위하여 지역 평균화 기법을 1D OTSU에 적용하였다. 실제 열 영상을 기반으로 실험을 수행한 결과 2D OTSU 방법에 비해서 연산 시간은 크게 줄었으며, 영상 분할 결과는 개선되었음을 확인하였다.
선형판별함수를 이용하여 음소단위의 판별필터를 구성하였다. 음소판별필터를 이용한 음성인식 시스템은 발성구간의 검출에 유용하고, 음성의 구분과 식별을 동시에 시행할 수 있으며 모든 음소를 동일한 인식모델로 취급하는 것이 가능하였다. 이 때 전문가의 경험적 지식을 이용하지 않고 수리적인 반복학습방법으로 시스템을 구성한 것이 특징이다. 모든 음소판별필터는 독립적으로 동작하므로 하나의 음소구간에 대해 복수필터 출력이 발생될 수 있으며, 발성구간의 음소가 탈락하는 경우도 있다. 따라서 본 연구에서는 무게벡터와 패턴벡터와의 내적에 통합계수를 이용하여 최대값을 선택하는 방법으로 다수개의 경합출력을 하나로 통합하였으며, 동시에 시간적인 정보와 중간값필터를 이용하여 탈락과 오인식되는 음소를 보상하므로써 인식율을 향상시켰다. 인식실험결과 모음의 경우 학습용자료에서는 $96.5\%$, 평가용자료에서는 $87.6\%$의 인식율을 얻었고, 자음은 각각 $84.0\%,70.8\%$의 음소인식율을 얻었다.
본 논문은 용접이상을 검출하기 위한 특징벡터의 선택과 퍼지 기술을 사용한 용접이상 분류기의 설계 및 구현에 관한 것이다. 용접이상 특징 벡터로써 시간 영역에서 절대적분치, 영교차수를, 주파수 영역에서 파워 스펙트럼 계수를, 두 영역 모두를 고려하여 히스토그램을 비교하였다. 그래프 분석에 의하여 특징벡터로서 히스토그램을 선택하였고, 상대 히스토그램의 최대 빈도수와 대응 구간 값이 정상 용접과 용입불량을 구분하는 데 가장 유효하다는 것을 발견하였다. 이 특징 벡터를 사용하여 퍼지 용접이상 분류기를 구현하였고, 695개의 용접 데이터 프레임에 대하여 시험하여 정분류율이 92.96%을 보여, 그 유효성을 입증하였다. 실험실에서의 결과로써 실제적인 산업용 레이저 용접 검사기로써 상대적 히스토그램을 이용한 퍼지 용접이상 분류기가 효과적임을 알 수 있다.
본 논문에서는 개인인증 시 활용 가능한 EEG 신호의 주파수 대역을 확인하기 위하여 뇌파 측정을 통해 분석한 결과를 제시하였다. 시각 과제의 유무에 따라 개안 상태와 폐안 상태로 구분하여 뇌파를 측정하였으며, 이를 델타파, 세타파, 알파파, SMR파, 중간베타파, 베타파 및 감마파의 7종류의 주파수 대역으로 나누어 시간에 따른 파워의 변동이 가장 작은 주파수 대역을 관찰하였다. 본 논문의 결과에서는 개안 상태와 폐안 상태에서는 유의한 차이가 나타나지 않았으나, 인간의 집중과 관련한 SMR파 및 중간베타파가 시간에 따른 파워의 변동이 가장 작게 관찰되었기에 재현성이 높은 주파수 대역인 것으로 나타났다.
본 논문은 MLP의 학습 방법으로 사용되는 EBP학습, Cross Entropy함수, 계층별 학습을 소개하고, 필기체 숫자인식 문제를 대상으로 각 학습 방법의 장단점을 비교한다. 실험 결과, EBP학습은 학습 초기에 학습 속도가 다른 학습 방법에 비해 느리지만, 일반화 성능이 좋다. 또한, EBP학습의 단점을 보안한 Cross Entropy 함수는 학습 속도가 EBP학습보다 빠르다. 그러나, 출력층의 오차 신호가 목표 벡터에 대해 선형적으로 학습하기 때문에, 일반화 성능이 EBP학습보다 낮다. 그리고, 계층별 학습은 학습 초기에, 학습 속도가 가장 빠르다. 그러나, 일정한 시간 후, 더 이상 학습이 진행되지 않기 때문에, 일반화 성능이 가장 낮은 결과를 얻었다. 따라서, 본 논문은 MLP를 응용하고자 할 때, 학습 방법의 선택 기준을 제시한다.
최근의 자동차 기술이 기계적 장치 위주에서 전장부품 특히, 차량의 안전 및 편의 기술로서 발전되고 있어서, 추후 자동차의 경쟁력은 에너지 효율성문제와 안전편의 기술의 적용에 의해 그 경쟁력이 결정될 것으로 판단된다. 본 연구에서는 자동차 운전자 졸림의 검지하기 위한 각종 기술을 소개하고 상용화된 기술의 장단점을 비교하여서, 이의 문제점을 해결하기 위한 복합 센싱기술을 소개한다. 기존의 카메라에 의한 눈동자인식을 기반으로한 직접적인 졸림검지와 운전자의 생체신호를 검출하여 간접적으로 스트레스, 피로도, 졸림을 검출하는 방법을 결합하여, 보다 정확도가 높은 졸림검지가 가능한 알고리즘을 개발하였다.
감정 표현은 보편적이고 감정 상태는 우리 생활 모든 분야에 영향을 미치는 매우 중요한 인자이다. 현재까지, 감정이 유발된 상황 하에서 획득된 뇌파를 분석하고 그 결과들을 토대로 해당 감정 상태를 정의하려는 노력은 주로 심리학자들에 의해서 많이 이루어져왔다. 하지만 최근에 이러한 감정과 관련된 정보는 정신활동을 지배하는 뇌가 활성화될 때 발생하는 뇌파를 통해서도 파악이 가능하다는 연구결과들이 발표되었다. 따라서 본 연구에서는 뇌파를 이용해서 인간이 흔히 느낄 수 있는 감정들을 비교 분석 하고자 하였다. 특정 감정에 대한 뇌파 변화를 얻기 위해 평안, 기쁨, 슬픔, 스트레스 등 감정에 변화를 줄 수 있는 영상과 음악을 피험자에게 가해지는 자극들로 활용하고 측정한 뇌파 신호를 FFT 변환 후 델타파, 세타파, 알파파, 베타파, 감마파 각각 파워스펙트럼을 분석하여 성능을 검증 한 결과 다른 감각들을 통해 느끼는 감정 유발에 대한 뇌파 변화의 정도를 제시하고자 하였다.
본 논문은 자동차 자율주행에 필요한 신호등 신호의 검출 성능을 개선시키는 방법을 제안한다. 일반적인 교통신호등 검출연구는 색상 임계치, 템플릿 매칭, 학습기 기반 등의 방법을 사용한다. 그러나 조도 차이로 인한 인식률 저하와 느린 처리속도 문제가 있다. 제안한 방법은 형태학적 전처리 후 검출마스크를 통해 교통신호등 영역검출 및 인식을 제안한다. 먼저 영상을 조도에 강건하게 하기 위해 입력 영상을 YCbCr로 변환하고, Y채널에서 수평에지 성분을 추출한다. 그 후 신호등의 형태학적 특징을 이용하여 영역을 검출한다. 마지막으로 색상을 이용하여 신호등을 검출한다. 제안 방법을 다양한 환경에서 적용하여 기존 알고리즘보다 검출율과 처리 속도가 향상되었음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.