• 제목/요약/키워드: signal recognition

검색결과 1,278건 처리시간 0.024초

부정감성 인식을 위한 생체신호 기반의 특징 선택 알고리즘 개발 (Feature Selecting Algorithm Development Based on Physiological Signals for Negative Emotion Recognition)

  • 이지은;유선국
    • 한국산학기술학회논문지
    • /
    • 제14권8호
    • /
    • pp.3925-3932
    • /
    • 2013
  • 감성은 인간의 삶과 밀접한 관련을 가지고 있으며 이는 집중력, 학습능력 등 많은 부분에 영향을 주어 다양한 행동 패턴을 가지게 한다. 따라서 본 논문의 목적은 부정감성을 구분하기 위하여 생체신호를 기반으로 주요한 특징들을 추출하는 것이다. 이를 위해 본 논문에서는 심전도, 뇌파, 피부 온도와 피부전도도를 기반으로 생체신호를 측정한 후, 선형분류기와 유전 알고리즘의 조합으로 정확하고 신속한 알고리즘 개발하고, 주요 특징을 추출하였다. 그 결과, 알고리즘은 최대 96.4%의 정확도를 가짐을 확인할 수 있었고, 추출된 파라미터는 심박변이도의 Mean, RMSSD, NN50과 뇌파의 전두엽 영역에서의 ${\sigma}$파와 ${\alpha}$파의 주파수 파워, 두정엽 영역에서 ${\alpha}$파, ${\beta}$파, ${\gamma}$파와 의 주파수 파워, 그리고 피부온도의 평균과 표준편차 값이었다. 이에 따라 각 각의 생체신호를 기반으로 한 추출 된 특징들은 부정감성의 분류에 있어 중요한 역할을 함을 확인할 수 있었다.

주파수 영역의 통계적 특징과 인공신경망을 이용한 기계가공의 사운드 모니터링 시스템 (Sound Monitoring System of Machining using the Statistical Features of Frequency Domain and Artificial Neural Network)

  • 이경민;칼렙;이석환;권기룡
    • 한국멀티미디어학회논문지
    • /
    • 제21권8호
    • /
    • pp.837-848
    • /
    • 2018
  • Monitoring technology of machining has a long history since unmanned machining was introduced. Despite the long history, many researchers have presented new approaches continuously in this area. Sound based machine fault diagnosis is the process consisting of detecting automatically the damages that affect the machines by analyzing the sounds they produce during their operating time. The collected sound is corrupted by the surrounding work environment. Therefore, the most important part of the diagnosis is to find hidden elements inside the data that can represent the error pattern. This paper presents a feature extraction methodology that combines various digital signal processing and pattern recognition methods for the analysis of the sounds produced by tools. The magnitude spectrum of the sound is extracted using the Fourier analysis and the band-pass filter is applied to further characterize the data. Statistical functions are also used as input to the nonlinear classifier for the final response. The results prove that the proposed feature extraction method accurately captures the hidden patterns of the sound generated by the tool, unlike the conventional features. Therefore, it is shown that the proposed method can be applied to a sound based automatic diagnosis system.

소형 표적 검출을 위한 히스토그램 기반의 영상분할 기법 연구 (A Study on Image Segmentation Method Based on a Histogram for Small Target Detection)

  • 양동원;강석종;윤주홍
    • 한국멀티미디어학회논문지
    • /
    • 제15권11호
    • /
    • pp.1305-1318
    • /
    • 2012
  • 영상분할은 영상 처리 및 패턴 인식에서 매우 어려운 전처리 과정 중 하나이다. 일반적으로는 단순하고 구현이 쉽기 때문에 OTSU의 방법이 많이 사용되고 있지만, 영상의 히스토그램이 단일 분포를 갖거나 단일 분포에 가까울 경우에는 영상 분할이 정확히 되지 못한다. 또한, 만일 표적이 영상에 비해서 소형인 경우 표적의 히스토그램 분포가 작아져서 단일 분포에 가까워진다. 본 논문에서는 소형 표적 검출을 위한 개선된 영상 분할 기법을 제안하였다. 단일 분포 히스토그램의 단점을 극복하기 위하여 배경 히스토그램의 영향을 감소시키는 기법을 적용하였으며, SNR을 높이기 위하여 지역 평균화 기법을 1D OTSU에 적용하였다. 실제 열 영상을 기반으로 실험을 수행한 결과 2D OTSU 방법에 비해서 연산 시간은 크게 줄었으며, 영상 분할 결과는 개선되었음을 확인하였다.

음소판별필터를 이용한 한국어 단음절 음성인식 (Speech Recognition on Korean Monosyllable using Phoneme Discriminant Filters)

  • 허성필;정현열;김경태
    • 한국음향학회지
    • /
    • 제14권1호
    • /
    • pp.31-39
    • /
    • 1995
  • 선형판별함수를 이용하여 음소단위의 판별필터를 구성하였다. 음소판별필터를 이용한 음성인식 시스템은 발성구간의 검출에 유용하고, 음성의 구분과 식별을 동시에 시행할 수 있으며 모든 음소를 동일한 인식모델로 취급하는 것이 가능하였다. 이 때 전문가의 경험적 지식을 이용하지 않고 수리적인 반복학습방법으로 시스템을 구성한 것이 특징이다. 모든 음소판별필터는 독립적으로 동작하므로 하나의 음소구간에 대해 복수필터 출력이 발생될 수 있으며, 발성구간의 음소가 탈락하는 경우도 있다. 따라서 본 연구에서는 무게벡터와 패턴벡터와의 내적에 통합계수를 이용하여 최대값을 선택하는 방법으로 다수개의 경합출력을 하나로 통합하였으며, 동시에 시간적인 정보와 중간값필터를 이용하여 탈락과 오인식되는 음소를 보상하므로써 인식율을 향상시켰다. 인식실험결과 모음의 경우 학습용자료에서는 $96.5\%$, 평가용자료에서는 $87.6\%$의 인식율을 얻었고, 자음은 각각 $84.0\%,70.8\%$의 음소인식율을 얻었다.

  • PDF

히스토그램과 퍼지 기법을 이용한 레이저 용접 결함 인식에 관한 연구 (A Study on Defect Recognition of Laser Welding using Histogram and Fuzzy Techniques)

  • 장영건
    • 전기전자학회논문지
    • /
    • 제5권2호
    • /
    • pp.190-200
    • /
    • 2001
  • 본 논문은 용접이상을 검출하기 위한 특징벡터의 선택과 퍼지 기술을 사용한 용접이상 분류기의 설계 및 구현에 관한 것이다. 용접이상 특징 벡터로써 시간 영역에서 절대적분치, 영교차수를, 주파수 영역에서 파워 스펙트럼 계수를, 두 영역 모두를 고려하여 히스토그램을 비교하였다. 그래프 분석에 의하여 특징벡터로서 히스토그램을 선택하였고, 상대 히스토그램의 최대 빈도수와 대응 구간 값이 정상 용접과 용입불량을 구분하는 데 가장 유효하다는 것을 발견하였다. 이 특징 벡터를 사용하여 퍼지 용접이상 분류기를 구현하였고, 695개의 용접 데이터 프레임에 대하여 시험하여 정분류율이 92.96%을 보여, 그 유효성을 입증하였다. 실험실에서의 결과로써 실제적인 산업용 레이저 용접 검사기로써 상대적 히스토그램을 이용한 퍼지 용접이상 분류기가 효과적임을 알 수 있다.

  • PDF

개인인증을 위한 뇌파의 재현성에 대한 분석 (Analysis of EEG Reproducibility for Personal Authentication)

  • 정유라;장윤석
    • 한국전자통신학회논문지
    • /
    • 제15권3호
    • /
    • pp.527-532
    • /
    • 2020
  • 본 논문에서는 개인인증 시 활용 가능한 EEG 신호의 주파수 대역을 확인하기 위하여 뇌파 측정을 통해 분석한 결과를 제시하였다. 시각 과제의 유무에 따라 개안 상태와 폐안 상태로 구분하여 뇌파를 측정하였으며, 이를 델타파, 세타파, 알파파, SMR파, 중간베타파, 베타파 및 감마파의 7종류의 주파수 대역으로 나누어 시간에 따른 파워의 변동이 가장 작은 주파수 대역을 관찰하였다. 본 논문의 결과에서는 개안 상태와 폐안 상태에서는 유의한 차이가 나타나지 않았으나, 인간의 집중과 관련한 SMR파 및 중간베타파가 시간에 따른 파워의 변동이 가장 작게 관찰되었기에 재현성이 높은 주파수 대역인 것으로 나타났다.

다층퍼셉트론의 오류역전파 학습과 계층별 학습의 비교 분석 (Comparative Analysis on Error Back Propagation Learning and Layer By Layer Learning in Multi Layer Perceptrons)

  • 곽영태
    • 한국정보통신학회논문지
    • /
    • 제7권5호
    • /
    • pp.1044-1051
    • /
    • 2003
  • 본 논문은 MLP의 학습 방법으로 사용되는 EBP학습, Cross Entropy함수, 계층별 학습을 소개하고, 필기체 숫자인식 문제를 대상으로 각 학습 방법의 장단점을 비교한다. 실험 결과, EBP학습은 학습 초기에 학습 속도가 다른 학습 방법에 비해 느리지만, 일반화 성능이 좋다. 또한, EBP학습의 단점을 보안한 Cross Entropy 함수는 학습 속도가 EBP학습보다 빠르다. 그러나, 출력층의 오차 신호가 목표 벡터에 대해 선형적으로 학습하기 때문에, 일반화 성능이 EBP학습보다 낮다. 그리고, 계층별 학습은 학습 초기에, 학습 속도가 가장 빠르다. 그러나, 일정한 시간 후, 더 이상 학습이 진행되지 않기 때문에, 일반화 성능이 가장 낮은 결과를 얻었다. 따라서, 본 논문은 MLP를 응용하고자 할 때, 학습 방법의 선택 기준을 제시한다.

자동차 운전자 졸림 감지 기술 (Car Driver Drowsiness Detection Technology)

  • 정완영;김종진;권태하
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 춘계학술대회
    • /
    • pp.481-484
    • /
    • 2011
  • 최근의 자동차 기술이 기계적 장치 위주에서 전장부품 특히, 차량의 안전 및 편의 기술로서 발전되고 있어서, 추후 자동차의 경쟁력은 에너지 효율성문제와 안전편의 기술의 적용에 의해 그 경쟁력이 결정될 것으로 판단된다. 본 연구에서는 자동차 운전자 졸림의 검지하기 위한 각종 기술을 소개하고 상용화된 기술의 장단점을 비교하여서, 이의 문제점을 해결하기 위한 복합 센싱기술을 소개한다. 기존의 카메라에 의한 눈동자인식을 기반으로한 직접적인 졸림검지와 운전자의 생체신호를 검출하여 간접적으로 스트레스, 피로도, 졸림을 검출하는 방법을 결합하여, 보다 정확도가 높은 졸림검지가 가능한 알고리즘을 개발하였다.

  • PDF

뇌파를 통한 감정 상태 인식에 관한 연구 (Recognition of the emotional state through the EEG)

  • 지훈;이충헌;박문규;안영준;이동훈
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 춘계학술대회
    • /
    • pp.958-961
    • /
    • 2015
  • 감정 표현은 보편적이고 감정 상태는 우리 생활 모든 분야에 영향을 미치는 매우 중요한 인자이다. 현재까지, 감정이 유발된 상황 하에서 획득된 뇌파를 분석하고 그 결과들을 토대로 해당 감정 상태를 정의하려는 노력은 주로 심리학자들에 의해서 많이 이루어져왔다. 하지만 최근에 이러한 감정과 관련된 정보는 정신활동을 지배하는 뇌가 활성화될 때 발생하는 뇌파를 통해서도 파악이 가능하다는 연구결과들이 발표되었다. 따라서 본 연구에서는 뇌파를 이용해서 인간이 흔히 느낄 수 있는 감정들을 비교 분석 하고자 하였다. 특정 감정에 대한 뇌파 변화를 얻기 위해 평안, 기쁨, 슬픔, 스트레스 등 감정에 변화를 줄 수 있는 영상과 음악을 피험자에게 가해지는 자극들로 활용하고 측정한 뇌파 신호를 FFT 변환 후 델타파, 세타파, 알파파, 베타파, 감마파 각각 파워스펙트럼을 분석하여 성능을 검증 한 결과 다른 감각들을 통해 느끼는 감정 유발에 대한 뇌파 변화의 정도를 제시하고자 하였다.

  • PDF

형태학적 전처리 후 색상을 이용한 교통 신호의 검출 (Detection of Traffic Light using Color after Morphological Preprocessing)

  • 김창대;최서혁;강지훈;류성필;김동우;안재형
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 춘계학술대회
    • /
    • pp.367-370
    • /
    • 2015
  • 본 논문은 자동차 자율주행에 필요한 신호등 신호의 검출 성능을 개선시키는 방법을 제안한다. 일반적인 교통신호등 검출연구는 색상 임계치, 템플릿 매칭, 학습기 기반 등의 방법을 사용한다. 그러나 조도 차이로 인한 인식률 저하와 느린 처리속도 문제가 있다. 제안한 방법은 형태학적 전처리 후 검출마스크를 통해 교통신호등 영역검출 및 인식을 제안한다. 먼저 영상을 조도에 강건하게 하기 위해 입력 영상을 YCbCr로 변환하고, Y채널에서 수평에지 성분을 추출한다. 그 후 신호등의 형태학적 특징을 이용하여 영역을 검출한다. 마지막으로 색상을 이용하여 신호등을 검출한다. 제안 방법을 다양한 환경에서 적용하여 기존 알고리즘보다 검출율과 처리 속도가 향상되었음을 확인하였다.

  • PDF