• Title/Summary/Keyword: signal pathway

Search Result 823, Processing Time 0.029 seconds

Identification and Characterization of Secreted Phosphoprotein 2 as a Novel Bioactive Protein for Myocardial Differentiation (심근세포로의 분화에 관여하는 새로운 생리활성 단백질 SPP2의 발굴)

  • Sejin Jeon
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.64-72
    • /
    • 2023
  • Despite several advances in identification of cardiac transcription factors, there are still needs to find new bioactive molecules that promote cardiomyogenesis from stem cells to highly efficient myocardial differentiation. We analyzed Illumina expression microarray data of mouse embryonic stem cells (mESCs)-derived cardiomyocytes. 276 genes were upregulated (≥ 4fold) in mESCs-derived cardiomyocytes compared undifferentiated ESCs. Secreted phosphoprotein 2 (Spp2) is one of candidates and is known to inhibit bone morphogenetic protein 2 (BMP2) signal transduction as a pseudoreceptor for BMP2. However, its function in cardiomyogenesis is unknown. We confirmed that Spp2 expression increased during the differentiation into functional cardiomyocytes using mESCs, TC-1/Kh2 and E14. Interestingly, Spp2 secretion transiently increased 3 days after formation of embryoid bodies (EBs), indicating that the extracellular secretion of Spp2 is involved in the differentiation of ESCs into cardiomyocytes. To characterize Spp2, we performed experiments using the C2C12 mouse myoblast cell line, which has the property of shifting the differentiation pathway from myoblastic to osteoblastic by treatment with BMP2. Similar to the differentiation of ESCs, transcription of Spp2 increased as C2C12 myoblasts differentiated into myotubes. In particular, Spp2 secretion increased dramatically in the early stage of differentiation. Furthermore, treatment with Spp2-Flag recombinant protein promoted the differentiation of C2C12 myoblasts into myotubes. Taken together, we suggest a novel bioactive protein Spp2 that differentiates ESCs into cardiomyocytes. This may be useful for understanding the molecular pathways of cardiomyogenesis and for experimental or clinical promotion of stem cell therapy for ischemic heart diseases.

Evaluation of Immune Enhancing Activity of Luthione, a Reduced Glutathione, in RAW 264.7 Macrophages (RAW 264.7 대식세포에서 환원형 glutathione인 luthione의 면역 증강 활성 평가)

  • Seon Yeong Ji;Da Hye Kwon;Hye Jin Hwang;Yung Hyun Choi
    • Journal of Life Science
    • /
    • v.33 no.5
    • /
    • pp.397-405
    • /
    • 2023
  • Although glutathione (GSH) has been shown to play an important role in the prevention of oxidative damage as an antioxidant, studies on immune regulation by it have not been properly conducted. In this study, we investigated whether luthione®, a reduced GSH, has an immune enhancing effect in murine macrophage RAW 264.7 cells. The results of flow cytometry and immunofluorescence experiments indicated that luthione increased phagocytic activity, a representative function of macrophages, compared to the control cells. According to the results of the cytokine array, the expression of interleukin (IL)-5, IL-1β, and IL-27 was significantly increased in the luthione-treated cells. Luthione also enhanced the production of tumor necrosis factor-α and IL-1β through increased expression of their proteins, and increased release of the immune mediators such as nitric oxide (NO) and prostaglandin E2 was associated with increased expression of inducible NO synthase and cyclooxygenase-2. In addition, the expression of cluster of differentiation 86, an M1 macrophage marker, was dramatically enhanced in RAW 264.7 cells treated with luthione. Furthermore, as a result of heat map analysis, we found that cytokine signaling 1/3-mediated signal transducer and activator of transcription/Janus tyrosine kinase signaling pathway was involved in the immunomodulatory effect by luthione. In conclusion, our data suggested that luthione could act as a molecular regulator in M1 macrophage polarization and enhance immune capacity by promoting macrophage phagocytic function.

Ginsenoside Rg1 treatment protects against cognitive dysfunction via inhibiting PLC-CN-NFAT1 signaling in T2DM mice

  • Xianan Dong ;Liangliang Kong ;Lei Huang ;Yong Su ;Xuewang Li;Liu Yang;Pengmin Ji ;Weiping Li ;Weizu Li
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.458-468
    • /
    • 2023
  • Background: As a complication of Type II Diabetes Mellitus (T2DM), the etiology, pathogenesis, and treatment of cognitive dysfunction are still undefined. Recent studies demonstrated that Ginsenoside Rg1 (Rg1) has promising neuroprotective properties, but the effect and mechanism in diabetes-associated cognitive dysfunction (DACD) deserve further investigation. Methods: After establishing the T2DM model with a high-fat diet and STZ intraperitoneal injection, Rg1 was given for 8 weeks. The behavior alterations and neuronal lesions were judged using the open field test (OFT) and Morris water maze (MWM), as well as HE and Nissl staining. The protein or mRNA changes of NOX2, p-PLC, TRPC6, CN, NFAT1, APP, BACE1, NCSTN, and Ab1-42 were investigated by immunoblot, immunofluorescence or qPCR. Commercial kits were used to evaluate the levels of IP3, DAG, and calcium ion (Ca2+) in brain tissues. Results: Rg1 therapy improved memory impairment and neuronal injury, decreased ROS, IP3, and DAG levels to revert Ca2+ overload, downregulated the expressions of p-PLC, TRPC6, CN, and NFAT1 nuclear translocation, and alleviated Aβ deposition in T2DM mice. In addition, Rg1 therapy elevated the expression of PSD95 and SYN in T2DM mice, which in turn improved synaptic dysfunction. Conclusions: Rg1 therapy may improve neuronal injury and DACD via mediating PLC-CN-NFAT1 signal pathway to reduce Aβ generation in T2DM mice.

Artesunate inhibits collagen-induced human platelets aggregation through regulation of PI3K/Akt and MAPK pathway (PI3K/Akt 및 MAPK 기전 조절을 통한 Artesunate의 콜라겐 유도의 사람 혈소판 응집 억제효과)

  • Lee, Dong-Ha
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.1
    • /
    • pp.57-62
    • /
    • 2022
  • Excessive activation and aggregation of platelets is a major cause of cardiovascular disease. Therefore, inhibition of platelet activation and aggregation is considered an attractive therapeutic target in preventing and treating cardiovascular diseases. In particular, strong platelet activation and aggregation by collagen secreted from the vascular endothelium are characteristic of vascular diseases. Artesunate is a compound extracted from the plant roots of Artemisia or Scopolia species, and has been reported to be effective in anticancer and Alzheimer's disease fields. However, the effect and mechanism of artesunate on collagen-induced platelet activation and aggregation have not been elucidated. In this study, the effect of artesunate on collagen-induced human platelet aggregation was confirmed and the mechanism of action of artesunate was clarified. Artesunate inhibited the phosphorylation of PI3K/Akt and Mitogen-activated protein kinases, which are phosphoproteins that are known to act in the signal transduction process when platelets are activated. In addition, artesunate decreased TXA2 production and decreased granule secretion in platelets such as ATP and serotonin release. As a result, artesunate strongly inhibited platelet aggregation induced by collagen, a strong aggregation inducer secreted from vascular endothelial cells, with an IC50 of 106.41 µM. These results suggest that artesunate has value as an effective antithrombotic agent for inhibiting the activation and aggregation of human platelets through vascular injury.

Mountain-cultivated ginseng protects against cognitive impairments in aged GPx-1 knockout mice via activation of Nrf2/ChAT/ERK signaling pathway

  • Bao Trong Nguyen;Eun-Joo Shin;Ji Hoon Jeong;Naveen Sharma;Ngoc Kim Cuong Tran;Yen Nhi Doan Nguyen;Dae-Joong Kim;Myung Bok Wie;Yi Lee;Jae Kyung Byun;Sung Kwon Ko;Seung-Yeol Nah;Hyoung-Chun Kim
    • Journal of Ginseng Research
    • /
    • v.47 no.4
    • /
    • pp.561-571
    • /
    • 2023
  • Background: Escalating evidence shows that ginseng possesses an antiaging potential with cognitive enhancing activity. As mountain cultivated ginseng (MCG) is cultivated without agricultural chemicals, MCG has emerged as a popular herb medicine. However, little is known about the MCG-mediated pharmacological mechanism on brain aging. Methods: As we demonstrated that glutathione peroxidase (GPx) is important for enhancing memory function in the animal model of aging, we investigated the role of MCG as a GPx inducer using GPx-1 (a major type of GPx) knockout (KO) mice. We assessed whether MCG modulates redox and cholinergic parameters, and memory function in aged GPx-1 knockout KOmice. Results: Redox burden of aged GPx-1 KO mice was more evident than that of aged wild-type (WT) mice. Alteration of Nrf2 DNA binding activity appeared to be more evident than that of NFκB DNA binding activity in aged GPx-1 KO mice. Alteration in choline acetyltransferase (ChAT) activity was more evident than that in acetylcholine esterase activity. MCG significantly attenuated reductions in Nrf2 system and ChAT level. MCG significantly enhanced the co-localization of Nrf2-immunoreactivity and ChAT-immunoreactivity in the same cell population. Nrf2 inhibitor brusatol significantly counteracted MCG-mediated up-regulation in ChAT level and ChAT inhibition (by k252a) significantly reduced ERK phosphorylation by MCG, suggesting that MCG might require signal cascade of Nrf2/ChAT/ERK to enhance cognition. Conclusion: GPx-1 depletion might be a prerequisite for cognitive impairment in aged animals. MCG-mediated cognition enhancement might be associated with the activations of Nrf2, ChAT, and ERK signaling cascade.

Rosmarinic Acid Inhibits Ultraviolet B-Mediated Oxidative Damage via the AKT/ERK-NRF2-GSH Pathway In Vitro and In Vivo

  • Mei Jing Piao;Pattage Madushan Dilhara Jayatissa Fernando;Kyoung Ah Kang;Pincha Devage Sameera Madushan Fernando;Herath Mudiyanselage Udari Lakmini Herath;Young Ree Kim;Jin Won Hyun
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.84-93
    • /
    • 2024
  • Rosmarinic acid (RA) is a phenolic ester that protects human keratinocytes against oxidative damage induced by ultraviolet B (UVB) exposure, however, the mechanisms underlying its effects remain unclear. This study aimed to elucidate the cell signaling mechanisms that regulate the antioxidant activity of RA and confirm its cyto-protective role. To explore the signaling mechanisms, we used the human keratinocyte cell line HaCaT and SKH1 hairless mouse skin. RA enhanced glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione synthetase (GSS) expression in HaCaT cells in a dose- and time-dependent manner. Moreover, RA induced nuclear factor erythroid-2-related factor 2 (NRF2) nuclear translocation and activated the signaling kinases protein kinase B (AKT) and extracellular signal-regulated kinase (ERK). Treatment with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, the ERK inhibitor U0126, and small interfering RNA (siRNA) gene silencing suppressed RA-enhanced GCLC, GSS, and NRF2 expression, respectively. Cell viability tests showed that RA significantly prevented UVB-induced cell viability decrease, whereas the glutathione (GSH) inhibitors buthionine sulfoximine, LY294002, and U0126 significantly reduced this effect. Moreover, RA protected against DNA damage and protein carbonylation, lipid peroxidation, and apoptosis caused by UVB-induced oxidative stress in a concentration-dependent manner in SKH1 hairless mouse skin tissues. These results suggest that RA protects against UVB-induced oxidative damage by activating AKT and ERK signaling to regulate NRF2 signaling and enhance GSH biosynthesis. Thus, RA treatment may be a promising approach to protect the skin from UVB-induced oxidative damage.

The Effect of Breathing Meditation Qigong Therapy on the Recovery of Olfactory Disorders and Voice Handicap Index in Parkinson's Disease Patients (호흡명상기공테라피가 파킨슨병 환자의 후각 및 음성 기능장애 개선에 미치는 효과)

  • So Jung An;Hun Mo Ahn
    • Journal of Korean Medical Ki-Gong Academy
    • /
    • v.23 no.1
    • /
    • pp.10-29
    • /
    • 2024
  • Objective : The purpose of this study is to determine whether An's breathing meditation qigong therapy (ABMQT) delivers bioenergy to the frontal lobe, prefrontal lobe, the olfactory tract in the mesolimbic pathway, olfactory bulb, CV22, CV21, olfactory area and vocal-related areas in Parkinson's disease (PD) patients to help improve olfactory disorders (anosmia) and vocal functions. Methods : The subjects of this study were 4 patients with idiopathic PD (3 males/1 female, 65.0±NA/68.7±10.2 years old). ABMQT was applied once a week, 120 minutes per session for 12 weeks in a non-invasive and noncontact manner, and the test before and after ABMQT application included olfactory impairment test the Korean version of Sniffin' stick test (KVSS), voice acoustic test, aerodynamic test, vocal handicap index (VHI-30), and auditory perception scale test tools. The results before and after the experiment were analyzed assuming a normal distribution, and a chi-square test was performed using a continuity correction, and the significance level was set to p<0.05. And the medical diagnosis and findings of the examiner (doctor in charge) before and after the experiment were described. Results : KVSS was significant as 0.2±0.5 and 9.0±0.0 before and after the experiment. There was no significant difference between the voice acoustic test FO and Jitter, the vocal aerodynamic test MPT, SP, AE, the vocal disorder index test, and the auditory perception test. However, the medical diagnosis findings of four study subjects showed that olfactory disorders, voice disorders, and laryngeal function were improved before and after the application of ABMQT. Conclusions : The breathing meditation qigong program showed significant effects on improving the olfactory disorders (anosmia) and speech function of each study subject. However, to produce meaningful results, it is thought that experiments involving a larger number of research participants are necessary, and additional blood and FMRI tests are conducted to verify metabolic activities and the olfactory neuron signal transmission system.

Signal Transduction Factors on the Modulation of Radiosusceptibility in K562 Cells (K562 세포의 방사선 감수성 변화에 영향을 미치는 신호전달인자)

  • Yang Kwang Mo;Youn Seon-Min;Jeong Soo-Jin;Jang Ji-Yeon;Jo Wol-Soom;Do Chang-Ho;Yoo Y대-Jin;Shin Young-Cheol;Lee Hyung Sik;Hur Won Joo;Lim Young-Jin;Jeong Min-Ho
    • Radiation Oncology Journal
    • /
    • v.21 no.3
    • /
    • pp.227-237
    • /
    • 2003
  • Purpose: The human chronic myelogenous leukemia cell line, K562, expresses the chimeric bcr-abl oncoprotein, whose deregulated protein tyrosine kinase activity antagonizes via DNA damaging agents. Previous experiments have shown that nanomolar concentrations of herbimycin A (HWA) coupled with X-irradiation have a synergistic effect in inducing apoptosis in the Ph-positive K562 leukemia cell line, but genistein, a PTK inhibitor, is non selective for the radiation-induced apoptosils on $p210^{bcr/abl}$ protected K562 cells. In these experiments, the cytoplasmic signal transduction pathways, the Induction on a number of transcription factors and the differential gene expression in this model were investigated. Materials and Methids: K562 cells in the exponential growth phase were used in this study. The cells were irradiated with 0.5-12 Gy, using a 6 Mev Linac (Clinac 1800, Varian, USA). Immediately after irradiation, the cells were treated with $0.25/muM$ of HMA and $25/muM$ of genistein, and the expressions and the activities of abl kinase, MAPK family, NF- kB, c-fos, c-myc, and thymidine kinase1 (TK1) were examined. The differential gene expressions induced by PTK inhibitors were also investigated. Results: The modulating effects of herbimycin A and genistein on the radiosensitivity of K562 cells were not related to the bcr-abl kinase activity. The signaling responses through the MAPK family of proteins, were not involved either in association with the radiation-induced apoptosis, which is accelerated by HMA, the expression of c-myc was increased. The combined treatment of genistein, with irradiation, enhanced NF- kB activity and the TK1 expression and activity. Conclusion: The effects of HMA and genistein on the radiosensitivity on the K562 cells were not related to the bcr-abl kinase activity in this study, another signaling pathway, besides the WAPK family responses to radiation to K562 cells, was found. Further evaluation using this model will provide valuable information for the optional radiosensitization or radioprotection.

Apoptotic Cell Death by Pectenotoxin-2 in p53-Deficient Human Hepatocellular Carcinoma Cells (종양억제유전자 p53 결손 인체간암세포에서 Pectenotoxin-2에 의한 Apoptosis 유도)

  • Shin, Dong-Yeok;Kim, Gi-Young;Choi, Byung-Tae;Kang, Ho-Sung;Jung, Jee-H.;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.17 no.10
    • /
    • pp.1447-1451
    • /
    • 2007
  • Through the screening of marine natural compounds that inhibit cancer cell proliferation, we previously reported that pectenotoxin-2 (PTX-2) isolated from marine sponges exhibits selective cytotoxicity against several cell lines in p53-deficient tumor cells compared to those with functional p53. However, the molecular mechanisms of its anti-proliferative action on malignant cell growth are not completely known. To further explore the mechanisms of its anti-cancer activity and to test whether the status of p53 in liver cancer cells correlates with their chemo-sensitivities to PTX-2, we used two well-known hepatocarcinoma cell lines, p53-deficient Hep3B and p53-wild type HepG2. We have demonstrated that PTX-2 markedly inhibits Hep3B cell growth and induces apoptosis whereas HepG2 cells are much more resistant to PTX-2 suggesting that PTX-2 seems to act by p53-independent cytotoxic mechanism. The apoptosis induced by PTX-2 in Hep3B cells was associated with the modulation of DNA fragmentation factor (DFF) family proteins, up-regulation of pro-apoptotic Bcl-2 family members such as Bax and Bcl-xS and activation of caspases (caspase-3, -8 and -9). Blockade of the caspase-3 activity by caspase-3 inhibitor, z-DEVD-fmk, prevented the PTX-2-induced growth inhibition in Hep3B cells. Moreover, treatment with PTX-2 also induced phosphorylation of AKT and extracellular-signal regulating kinase (ERK), but not c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MARK). Specific inhibitors of PI3K inhibitor (LY294002) and ERK1/2 inhibitor (PD98059) significantly blocks PTX-2-induced-anti-proliferative effects, whereas a JNK inhibitor (SP600125) and a p38 MAPK inhibitor (SB203580) have no significant effects demonstrating that the pro-apoptotic effect of PTX-2 mediated through activation of AKT and ERK signal pathway in Hep3B cells.

Apoptotic Effect of Extract from Artemisia annua Linné by Akt/mTOR/GSK-3β Signal Pathway in Hep3B Human Hepatoma Cells (Hep3B 간암세포에서 개똥쑥추출물로부터 Akt-mTOR-GSK3β 신호경로에 의한 apoptosis 효과)

  • Kim, Eun Ji;Kim, Guen Tae;Kim, Bo Min;Lim, Eun Gyeong;Ha, Sung Ho;Kim, Sang-Yong;Kim, Young Min
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.764-771
    • /
    • 2016
  • Extracts from Artemisia annua Linné (AAE) have been known to possess various functions, including anti-bacterial, anti-virus, and anti-oxidant effects. However, the mechanism of those effects of AAE is not well-known. The aim of this study was to analyze the inhibitory effects of AAE on cell proliferation of the human hepatoma cell line (Hep3B) and to examine its effects on apoptosis. Activation by phosphorylation of Akt is cell proliferation through the phosphorylation of TSC2, mTOR, and GSK-3β. We suggested that AAE may exert cancer cell apoptosis through Akt/mTOR/GSK-3β signal pathways and mitochondria-mediated apoptotic proteins. For this, we examined the effects of extracts of AAE on cell proliferation according to treatment concentration. Treatment with AAE not only reduced cell viability, but also resulted in the induced release of lactate dehydrogenase (LDH). These results were determined with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and a lactate dehydrogenase (LDH) assay. Furthermore, we determined the effects of apoptosis through Hoechst 33342 staining, annexinⅤ-propidium iodide (PI) staining, 5,5′, 6,6′-tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide (JC-1) staining, and Western blotting. Our study showed that the treatment of liver cancer cells with AAE resulted in the inhibition of Akt, TSC2, GSK-3β-phosphorylated, Bcl-2, and pro-caspase 3 and the activation of Bim, Bax, Bak, and cleaved PARP expressions. These results indicate that AAE induced apoptosis by means of a mitochondrial event through the regulate of Akt/mTOR/GSK-3β signaling pathways.