• Title/Summary/Keyword: signal feature

Search Result 1,126, Processing Time 0.028 seconds

Efficient Signal Feature Detection method using Spectral Correlation Function in the Fading channel

  • Song, Chang-Kun;Kim, Kyung-Seok
    • International Journal of Contents
    • /
    • v.3 no.2
    • /
    • pp.35-39
    • /
    • 2007
  • The cognitive radio communication is taking the attentions because the development of the technique came to be possible to analyze wireless signals. In the IEEE 802.22 WRAN Systems[1], how to detect a spectrum and signals is continuously studied. In this paper, we propose the efficient signal detection method using SCF (Spectral Correlation Function). It is easy to detect the signal feature when we are using the SCF. Because most modulated signals have the cyclo-stationarity which is unique for each signal. But the fading channel effected serious influence even though it detects the feature of the signal. We applied LMS(Least Mean Square) filter for the compensation of the signal which is effected the serious influence in the fading channel. And we analyze some signal patterns through the SCF. And we show the unique signal feature of each signal through the SCF method. It is robust for low SNR(Signal to Noise Ratio) environment and we can distinguish it in the fading channel using LMS Filter.

Strip Rupture Detection System of Cold Rolling Mill using Transient Current Signal (과도 전류신호를 이용한 냉간 압연기의 판 터짐 검지 시스템)

  • Yang, S.W.;Oh, J.S.;Shim, M.C.;Kim, S.J.;Yang, B.S.;Lee, W.H.
    • Journal of Power System Engineering
    • /
    • v.14 no.2
    • /
    • pp.40-47
    • /
    • 2010
  • This paper proposes a fault detection system to detect the strip rupture in six-high stand Cold Rolling Mills based on transient current signal of an electrical motor. For this work, signal smoothing technique is used to highlight precise feature between normal and fault condition. Subtracting the smoothed signal from the original signal gives the residuals that contains the information related to the normal or faulty condition. Using residual signal, discrete wavelet transform is performed and acquire the signal presenting fault feature well. Also, feature extraction and classification are executed by using PCA, KPCA and SVM. The actual data is acquired from POSCO for validating the proposed method.

Signal Processing Technology for Rotating Machinery Fault Signal Diagnosis (회전기계 결함신호 진단을 위한 신호처리 기술 개발)

  • Choi, Byeong-Keun;Ahn, Byung-Hyun;Kim, Yong-Hwi;Lee, Jong-Myeong;Lee, Jeong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.331-337
    • /
    • 2013
  • Acoustic Emission technique is widely applied to develop the early fault detection system, and the problem about a signal processing method for AE signal is mainly focused on. In the signal processing method, envelope analysis is a useful method to evaluate the bearing problems and Wavelet transform is a powerful method to detect faults occurred on rotating machinery. However, exact method for AE signal is not developed yet. Therefore, in this paper two methods which are Hilbert transform and DET for feature extraction. In addition, we evaluate the classification performance with varying the parameter from 2 to 15 for feature selection DET, 0.01 to 1.0 for the RBF kernel function of SVR, and the proposed algorithm achieved 94% classification accuracy with the parameter of the RBF 0.08, 12 feature selection.

  • PDF

Feature Extraction of ECG Signal for Heart Diseases Diagnoses (심장질환진단을 위한 ECG파형의 특징추출)

  • Kim, Hyun-Dong;Min, Chul-Hong;Kim, Tae-Seon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.325-327
    • /
    • 2004
  • ECG limb lead II signal widely used to diagnosis heart diseases and it is essential to detect ECG events (onsets, offsets and peaks of the QRS complex P wave and T wave) and extract them from ECG signal for heart diseases diagnoses. However, it is very difficult to develop standardized feature extraction formulas since ECG signals are varying on patients and disease types. In this paper, simple feature extraction method from normal and abnormal types of ECG signals is proposed. As a signal features, heart rate, PR interval, QRS interval, QT interval, interval between S wave and baseline, and T wave types are extracted. To show the validity of proposed method, Right Bundle Branch Block (RBBB), Left Bundle Branch Block (LBBB), Sinus Bradycardia, and Sinus Tachycardia data from MIT-BIH arrhythmia database are used for feature extraction and the extraction results showed higher extraction capability compare to conventional formula based extraction method.

  • PDF

A Study on the Extraction of Feature Variables for the Pattern Recognition of Welding Flaws (용접결함의 형상인식을 위한 특징변수 추출에 관한 연구)

  • Kim, Jae-Yeol;Roh, Byung-Ok;You, Sin;Kim, Chang-Hyun;Ko, Myung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.103-111
    • /
    • 2002
  • In this study, the natural flaws in welding parts are classified using the signal pattern classification method. The storage digital oscilloscope including FFT function and enveloped waveform generator is used and the signal pattern recognition procedure is made up the digital signal processing, feature extraction, feature selection and classifier design. It is composed with and discussed using the distance classifier that is based on euclidean distance the empirical Bayesian classifier. feature extraction is performed using the class-mean scatter criteria. The signal pattern classification method is applied to the signal pattern recognition of natural flaws.

The Feature Extraction of Welding Flaw for Shape Recognition (용접결함의 형상인식을 위한 특징추출)

  • Kim, Jae-Yeol;You, Sin;Kim, Chang-Hyun;Song, Kyung-Seok;Yang, Dong-Jo;Lee, Chang-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.304-309
    • /
    • 2003
  • In this study, natural flaws in welding parts are classified using the signal pattern classification method. The storage digital oscilloscope including FFT function and enveloped waveform generator is used and the signal pattern recognition procedure is made up the digital signal processing, feature extraction, feature selection and classifier design. It is composed with and discussed using the distance classifier that is based on euclidean distance the empirical Bayesian classifier. Feature extraction is performed using the class-mean scatter criteria. The signal pattern classification method is applied to the signal pattern recognition of natural flaws.

  • PDF

Availability Verification of Feature Variables for Pattern Classification on Weld Flaws (용접결함의 패턴분류를 위한 특징변수 유효성 검증)

  • Kim, Chang-Hyun;Kim, Jae-Yeol;Yu, Hong-Yeon;Hong, Sung-Hoon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.62-70
    • /
    • 2007
  • In this study, the natural flaws in welding parts are classified using the signal pattern classification method. The storage digital oscilloscope including FFT function and enveloped waveform generator is used and the signal pattern recognition procedure is made up the digital signal processing, feature extraction, feature selection and classifier design. It is composed with and discussed using the distance classifier that is based on euclidean distance the empirical Bayesian classifier. Feature extraction is performed using the class-mean scatter criteria. The signal pattern classification method is applied to the signal pattern recognition of natural flaws.

Recognition of Feature Points in ECG and Human Pulse using Wavelet Transform (웨이브렛 변환을 이용한 심전도와 맥파의 특징점 인식)

  • Kil Se-Kee;Shen Dong-Fan;Lee Eung-Hyuk;Min Hong-Ki;Hong Seung-Hong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.2
    • /
    • pp.75-81
    • /
    • 2006
  • The purpose of this paper is to recognize the feature points of ECG and human pulse -which signal shows the electric and physical characteristics of heart respectively- using wavelet transform. Wavelet transform is proper method to analyze a signal in time-frequency domain. In the process of wavelet decomposition and reconstruction of ECG and human pulse signal, we removed the noises of signal and recognized the feature points of signal using some of decomposed component of signal. We obtained the result of recognition rate that is estimated about 95.45$\%$ in case of QRS complex, 98.08$\%$ in case of S point and P point and 92.81$\%$ in case of C point. And we computed diagnosis parameters such as RRI, U-time and E-time.

Voice Recognition Performance Improvement using the Convergence of Voice signal Feature and Silence Feature Normalization in Cepstrum Feature Distribution (음성 신호 특징과 셉스트럽 특징 분포에서 묵음 특징 정규화를 융합한 음성 인식 성능 향상)

  • Hwang, Jae-Cheon
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.5
    • /
    • pp.13-17
    • /
    • 2017
  • Existing Speech feature extracting method in speech Signal, there are incorrect recognition rates due to incorrect speech which is not clear threshold value. In this article, the modeling method for improving speech recognition performance that combines the feature extraction for speech and silence characteristics normalized to the non-speech. The proposed method is minimized the noise affect, and speech recognition model are convergence of speech signal feature extraction to each speech frame and the silence feature normalization. Also, this method create the original speech signal with energy spectrum similar to entropy, therefore speech noise effects are to receive less of the noise. the performance values are improved in signal to noise ration by the silence feature normalization. We fixed speech and non speech classification standard value in cepstrum For th Performance analysis of the method presented in this paper is showed by comparing the results with CHMM HMM, the recognition rate was improved 2.7%p in the speech dependent and advanced 0.7%p in the speech independent.