• Title/Summary/Keyword: signal evaluation

Search Result 1,918, Processing Time 0.031 seconds

The Analysis of High Frequency Signal for 7tonf-class Power Pack System of KSLV-II (한국형발사체 7톤 파워팩 시스템 고주파 신호 분석)

  • So, Younseok;Yi, Seungjae;Lee, Kwangjin;Kim, Seunghan;Han, Yeoungmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.3
    • /
    • pp.96-102
    • /
    • 2016
  • The 7tonf-class power pack test at turbopump test facility in Naro space center was performed for confirmations of starting/running/ending operation characteristics before 7tonf rocket engine hot-firing test. The dynamic pressure mounted on a combustion chamber of gas generator is measured under 0.2 bar which does not conditioned to the unstable combustion. The analysis results of RPM and acceleration sensors mounted on the turbopump, the power pack test was performed to the estimated RPM with the stable combustion.

A Simulation Tool for Ultrasonic Inspection

  • Krishnamurthy, Adarsh;Mohan, K.V.;Karthikeyan, Soumya;Krishnamurthy, C.V.;Balasubramaniam, Krishnan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.3
    • /
    • pp.153-161
    • /
    • 2006
  • A simulation program SIMULTSONIC is under development at CNDE to help determine and/or help optimize ultrasonic probe locations for inspection of complex components. SIMULTSONIC provides a ray-trace based assessment for immersion and contact modes of inspection. The code written in Visual C++ operating in Microsoft Windows environment provides an interactive user interface. In this paper, a description of the various features of SIMULTSONIC is given followed by examples illustrating the capability of SIMULTSONIC to deal with inspection of canonical objects such as pipes. In particular, the use of SIMULTSONIC in the inspection of very thin-walled pipes (with 450 urn wall thickness) is described. Ray trace based assessment was done using SIMULTSONIC to determine the standoff distance and the angle of oblique incidence for an immersion mode focused transducer. A 3-cycle Hanning window pulse was chosen for simulations. Experiments were carried out to validate the simulations. The A-scans and the associated B-Scan images obtained through simulations show good correlation with experimental results, both with the arrival time of the signal as well as with the signal amplitudes.

Correlation between Magnetic Resonance Image Signal Changes and Electromyographic Findings after Sciatic Nerve Transection in the Rat (백서의 좌골신경 절단 후 비복근의 자기공명영상 신호강도 변화와 근전도 소견의 관계)

  • Lee, Joo Hwan;Lee, Jang Chul;Kim, Dong Won;Park, Ki Young;Lee, Sung Moon
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.1
    • /
    • pp.101-107
    • /
    • 2000
  • Objectives : The evaluation of peripheral nerve injuries has traditionally relied on a clinical history, physical examination, and electrodiagnostic studies. The purpose of the present study was to examine serial magnetic resonance image(MRI) changes following acute muscle denervation under experimental conditions and to identify potential advantages and disadvantages of this use of MRI. Methods : An experimental transection of right sciatic nerve on Spargue-Dawley rats was performed. MRI was performed with T1-weighted spin-echo and STIR sequences. The imaging findings were compared with EMG in order to determine its sensitivity relative to this standard procedure. A simultaneous histopathological study provided information about the morphological basis of the imaging findings. Signal intensities were expressed as a ratio of abnormal to normal. Results : The signal intensity ratio of muscles with the STIR sequence was increased significantly at 2 weeks after sciatic nerve transection(p<0.05), although definite signal change was seen as early as 4 days postdenervation in one. EMG revealed significant denervation potential from 3 days after nerve transection. Diffuse cell atrophy was revealed hostologically at 2 weeks after transection, which was at the same time of significant signal change in MRI. Conclusion : MRI signal changes in denervated muscles secondary to nerve injury correlate with the degree of muscle atrophy on histologic examination. In addition to EMG, MRI can document the course of muscle atrophy and mesenchymal abnormalities in denervation. These results indicate that MRI can play a complementary role in the evaluation of patients with denervation.

  • PDF

The Study on Eddy Current Characteristic for Surface Defect of Gas Turbine Rotor Material (가스터빈 로터 재질에 따른 표면결함 와전류 특성연구)

  • Ahn, Y.S.;Gil, D.S.;Park, S.G.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.63-67
    • /
    • 2010
  • This paper introduces the eddy current signal characteristic of magnetic and non-magnetic gas turbine rotor. In the past, Magnetic particle inspection method was used in magnetic material for qualitative defect evaluation and the ultrasonic test method was used for quantitative evaluation. Nowadays, eddy current method is used in magnetic gas turbine rotor inspection due to advanced sensor design technology. We are studying on the magnetic gas turbine rotor by using eddy current method. We prepared diverse depth specimens made by magnetic and non-magnetic materials. We select optimum frequency according to material standard penetration data and experiment results. We got the signal on magnetic and non-magnetic material about 0.2 mm, 05 mm, 1.0 mm, 1.5 mm 2.0 mm and 2.5 mm depth defects and compare the signal amplitude and signal trend according to defect depth and frequency. The results show that signal amplitudes of magnetic are bigger than non-magnetic material and the trends are similar on every defect depth and frequency. The detection and resolution capabilities of eddy current are more effective in magnetic material than in non-magnetic materials. So, the eddy current method is effective inspection method on magnetic gas turbine rotor. And it has the merits of time saving and simple procedure by elimination of the ultrasonic inspection in traditional inspection method.

A Study on Functionality Evaluation Method of Real-time Traffic Signal Control System (실시간 신호제어시스템 기능성 평가방법론에 관한 연구)

  • Lee, Choul-Ki;Oh, Young-Tae;Lee, Hwan-Pil;Yang, Ryun-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.1
    • /
    • pp.42-58
    • /
    • 2008
  • Nowadays the installation of Real-time Traffic Signal Control system is gradually spread, in order to solve the traffic problem which become serious. The most important thing are reliability of data collection and functionality of system in Real-time Traffic Signal Control System. But, the evaluation for those introduction system are defective after system constructing. So, many systems are not working properly to those systems's primarily purpose. This study is executed expansion through field test and analysis which check performance and advise of system operation. It has purpose to establish of the maintenance system of Real-time Traffic Signal Control system. As the result of analysis, we could find the several problems in this study. So, we also could guess that the effective maintenance systems of the Real-time Traffic Signal Control system is necessary within few years.

  • PDF

A Survey of Objective Measurement of Fatigue Caused by Visual Stimuli (시각자극에 의한 피로도의 객관적 측정을 위한 연구 조사)

  • Kim, Young-Joo;Lee, Eui-Chul;Whang, Min-Cheol;Park, Kang-Ryoung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.195-202
    • /
    • 2011
  • Objective: The aim of this study is to investigate and review the previous researches about objective measuring fatigue caused by visual stimuli. Also, we analyze possibility of alternative visual fatigue measurement methods using facial expression recognition and gesture recognition. Background: In most previous researches, visual fatigue is commonly measured by survey or interview based subjective method. However, the subjective evaluation methods can be affected by individual feeling's variation or other kinds of stimuli. To solve these problems, signal and image processing based visual fatigue measurement methods have been widely researched. Method: To analyze the signal and image processing based methods, we categorized previous works into three groups such as bio-signal, brainwave, and eye image based methods. Also, the possibility of adopting facial expression or gesture recognition to measure visual fatigue is analyzed. Results: Bio-signal and brainwave based methods have problems because they can be degraded by not only visual stimuli but also the other kinds of external stimuli caused by other sense organs. In eye image based methods, using only single feature such as blink frequency or pupil size also has problem because the single feature can be easily degraded by other kinds of emotions. Conclusion: Multi-modal measurement method is required by fusing several features which are extracted from the bio-signal and image. Also, alternative method using facial expression or gesture recognition can be considered. Application: The objective visual fatigue measurement method can be applied into the fields of quantitative and comparative measurement of visual fatigue of next generation display devices in terms of human factor.

Signal Characteristics of Multi-coil Probe for the Test of Reinforcement Embedded in Concrete (다중 코일에 의한 콘크리트내의 철근 탐지 시 신호 특성)

  • Kim, Young-Joo;Lee, Seung-Seok;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.4
    • /
    • pp.285-289
    • /
    • 2000
  • This study suggests a rebar detection technique for simultaneous detection of size and cover of embedded reinforcement in concrete. The structure of the probe made in this study is somewhat different from commercial ones. This probe has three sensing coils. Rebar size and cover depth can be evaluated by detecting and analyzing the signal from them. Amplitude and phase variation of each coil in the probe was investigated using an impedance analyzer and the loci of transfer functions of the coils were analyzed. The locus of transfer function from the sensing coil positioned inside excitation coil was simple as well known, but the others from the coils outside excitation coil were not so. Actual experiment on rebar detection was performed with our probe and an eddy current test system for various rebar sizes and depths. The signal shape according to variation of cover depths showed the same tendency with the transfer function loci acquired by impedance analyzer. The different variation pattern of signal enabled to evaluate rebar size and cover depth simultaneously.

  • PDF

A Quantitative Evaluation and Comparison of Harmonic Elimination Algorithms Based on Moving Average Filter and Delayed Signal Cancellation in Phase Synchronization Applications

  • Xiong, Liansong;Zhuo, Fang;Wang, Feng;Liu, Xiaokang;Zhu, Minghua;Yi, Hao
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.717-730
    • /
    • 2016
  • The harmonic components of grid voltage result in oscillations of the calculated phase obtained via phase synchronization. This affects the security and stability of grid-connected converters. Moving average filter, delayed signal cancellation and their related harmonic elimination algorithms are major methods for such issues. However, all of the existing methods have their limitations in dealing with multiple harmonics issues. Furthermore, few studies have focused on a comparison and evaluation of these algorithms to achieve optimal algorithm selections in specific applications. In this paper, these algorithms are quantitatively analyzed based on the derived mathematical models. Moreover, an enhanced moving average filter and enhanced delayed signal cancellation algorithms, which are applicable for eliminating a group of selective harmonics with only one calculation block, are proposed. On this basis, both a comprehensive comparison and a quantitative evaluation of all of the aforementioned algorithms are made from several aspects, including response speed, required data storage size, sensitivity to sampling frequency, and elimination of random noise and harmonics. With the conclusions derived in this paper, better overall performance in terms of harmonic elimination can be achieved. In addition, experimental results under different conditions demonstrate the validity of this study.

Characteristics of Corrosion Damages in Bottom Plate of Above Ground Tank by Acoustic Emission Signal (지상탱크 저판부의 부식손상 평가를 위한 음향방출 신호의 분석)

  • Kim, Sung-Dai;Jung, Woo-Gwang;Lee, Jong-O
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.64-72
    • /
    • 2007
  • Under the AE methods, the valid condition analysis and evaluation the leak etc, resulted by the AE signal pattern on the bottom plate of ground tank at full. In next more, the gradient of accumulation amplitude distribution analysis and comparison the energy, count, and duration time that noise of EMI signal were removed. EMI signal showed height-energy, count, and duration time, it also appeared great gradient of accumulation distribution. Then, with the pure remaining AE signals cluster analysis and location. It would possibly assume of damage with corrosion. Total cluster 20 and energy showed between the maximum 11,990 and 8,565 which is much lower than above figure and event number showed from 8 to 5. Even when it difficult to certify damage by open, as it is raised higher height-sensitivity and threshold by 60 dB. It would possibly presume of location source more accurately.

  • PDF

Packet Loss Concealment Algorithm Using Pitch Harmonic Motion Estimation and Adaptive Signal Scale Estimation (피치 하모닉 움직임 예측과 적응적 신호 크기 예측을 이용한 패킷 손실 은닉 알고리즘)

  • Kim, Tae-Ha;Lee, In-Sung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.4
    • /
    • pp.247-256
    • /
    • 2021
  • In this paper, we propose a packet loss concealment (PLC) algorithm using pitch harmonic motion prediction and adaptive signal amplitude prediction and. The spectral motion prediction method divides the spectral motion of the previous usable frame into predetermined sub-bands to predict and restore the motion of the lost signal. In the proposed algorithm, the speech signal is classified into voiced and unvoiced sounds. In the case of voiced sounds, it is further divided into pitch harmonics using the pitch frequency to predict and restore the pitch harmonic motion of the lost frame, and for the unvoiced sound, the lost frame is restored using the spectral motion prediction method. When the continuous loss of speech frames occurs, a method of adjusting the gain using the least mean square (LMS) predictor is proposed. The performance of the proposed algorithm was evaluated through the objective evaluation method, PESQ (Perceptual Evaluation of Speech Quality) and was showed MOS 0.1 improvement over the conventional method.