• Title/Summary/Keyword: signal energy efficiency

Search Result 234, Processing Time 0.025 seconds

Robust Energy Efficiency Power Allocation for Uplink OFDM-Based Cognitive Radio Networks

  • Zuo, Jiakuo;Dao, Van Phuong;Bao, Yongqiang;Fang, Shiliang;Zhao, Li;Zou, Cairong
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.506-509
    • /
    • 2014
  • This paper studies the energy efficiency power allocation for cognitive radio networks based on uplink orthogonal frequency-division multiplexing. The power allocation problem is intended to minimize the maximum energy efficiency measured by "Joule per bit" metric, under total power constraint and robust aggregate mutual interference power constraint. However, the above problem is non-convex. To make it solvable, an equivalent convex optimization problem is derived that can be solved by general fractional programming. Then, a robust energy efficiency power allocation scheme is presented. Simulation results corroborate the effectiveness of the proposed methods.

A bond graph approach to energy efficiency analysis of a self-powered wireless pressure sensor

  • Cui, Yong;Gao, Robert X.;Yang, Dengfeng;Kazmer, David O.
    • Smart Structures and Systems
    • /
    • v.3 no.1
    • /
    • pp.1-22
    • /
    • 2007
  • The energy efficiency of a self-powered wireless sensing system for pressure monitoring in injection molding is analyzed using Bond graph models. The sensing system, located within the mold cavity, consists of an energy converter, an energy modulator, and a ultrasonic signal transmitter. Pressure variation in the mold cavity is extracted by the energy converter and transmitted through the mold steel to a signal receiver located outside of the mold, in the form of ultrasound pulse trains. Through Bond graph models, the energy efficiency of the sensing system is characterized as a function of the configuration of a piezoceramic stack within the energy converter, the pulsing cycle of the energy modulator, and the thicknesses of the various layers that make up the ultrasonic signal transmitter. The obtained energy models are subsequently utilized to identify the minimum level of signal intensity required to ensure successful detection of the ultrasound pulse trains by the signal receiver. The Bond graph models established have shown to be useful in optimizing the design of the various constituent components within the sensing system to achieve high energy conversion efficiency under a compact size, which are critical to successful embedment within the mold structure.

Energy-Efficiency Power Allocation for Cognitive Radio MIMO-OFDM Systems

  • Zuo, Jiakuo;Dao, Van Phuong;Bao, Yongqiang;Fang, Shiliang;Zhao, Li;Zou, Cairong
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.686-689
    • /
    • 2014
  • This paper studies energy-efficiency (EE) power allocation for cognitive radio MIMO-OFDM systems. Our aim is to minimize energy efficiency, measured by "Joule per bit" metric, while maintaining the minimal rate requirement of a secondary user under a total power constraint and mutual interference power constraints. However, since the formulated EE problem in this paper is non-convex, it is difficult to solve directly in general. To make it solvable, firstly we transform the original problem into an equivalent convex optimization problem via fractional programming. Then, the equivalent convex optimization problem is solved by a sequential quadratic programming algorithm. Finally, a new iterative energy-efficiency power allocation algorithm is presented. Numerical results show that the proposed method can obtain better EE performance than the maximizing capacity algorithm.

An Energy Saving Cooperative Communications Protocol without Reducing Spectral Efficiency for Wireless Ad Hoc Networks

  • Xuyen, Tran Thi;Kong, Hyung-Yun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2A
    • /
    • pp.107-112
    • /
    • 2009
  • Spectral efficiency of current two-phase cooperative communications protocols is low since in the second time the relay forwards the same signal received from the source to the destination, the source keeps silent in this time. In this paper, we propose a novel cooperative communications protocol where the signal needed to transmit to the destination is sent in both phases, the source and the relay also transmit different signal to the destination thus no loss of spectral efficiency. This protocol performs signal selection based on log-likelihood ratio (LLR) at relay and maximum likelihood (ML) detection at destination. While existing protocols pay for a worse performance than direct transmission in the low SNR regime which is of special interest in ad hoc networks, ours is better over the whole range of SNR. In addition, the proposal takes advantages of bandwidth efficiency, long delay and interference among many terminals in ad hoc network. Simulation results show that the proposed protocol can significantly save total energy for wireless ad hoc networks.

User-Oriented Energy- and Spectral-Efficiency Tradeoff for Wireless Networks

  • Zhang, Yueying;Long, Hang;Peng, Yuexing;Zheng, Kan;Wang, Wenbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.2
    • /
    • pp.216-233
    • /
    • 2013
  • Conventional optimization designs of wireless networks mainly focus on spectral efficiency (SE) as a performance metric. However, as diverse media services are emerging, a green wireless network, which not only meets the quality of experience (QoE) requirements for users and also improves energy efficiency (EE), is the most appropriate solution. In this paper, we firstly propose the unit QoE per Watt, which is termed QoE efficiency (QEE), as a user-oriented metric to evaluate EE for wireless networks. We then analyze which is the kind of wireless resource given priority to use under different scenarios to obtain an acceptable QEE. Particularly, power, delay and data-rate related to QoE are separately addressed for several typical services, such as file download, video stream and web browsing services. Next, the fundamental tradeoffs are investigated between QEE and SE for wireless networks. Our analytical results are helpful for network design and optimization to strike a good balance between the users perceived QoE and energy consumption.

Energy Efficiency Analysis of Cellular Downlink Transmission with Network Coding over Rayleigh Fading Channels

  • Zhu, Jia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.3
    • /
    • pp.446-458
    • /
    • 2013
  • Recently, energy-efficient cellular transmission has received considerable research attention to improve the energy efficiency of wireless communication. In this paper, we consider a cellular network consisting of one base station (BS) and multiple user terminals and explore the network coding for enhancing the energy efficiency of cellular downlink transmission from BS to users. We propose the network coded cellular transmission scheme and conduct its energy consumption analysis with target outage probability and data rate requirements in Rayleigh fading environments. Then, the energy efficiency in Bits-per-Joule is further defined and analyzed to evaluate the number of bits delivered per Joule of energy cost. Numerical results show that the network coded cellular transmission significantly outperforms the traditional cellular transmission in terms of energy efficiency, implying that given a Joule of energy cost, the network coded cellular transmission scheme can deliver more bits than the traditional cellular transmission.

Performance of ZF Precoder in Downlink Massive MIMO with Non-Uniform User Distribution

  • Kong, Chuili;Zhong, Caijun;Zhang, Zhaoyang
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.688-698
    • /
    • 2016
  • In this paper, we investigate the achievable sum rate and energy efficiency of downlink massive multiple-input multiple-output antenna systems with zero-forcing precoding, by taking into account the randomness of user locations. Specifically, we propose two types of non-uniform user distributions, namely, center-intensive user distribution and edge-intensive user distribution. Based on these user distributions, we derive novel tight lower and upper bounds on the average sum rate. In addition, the impact of user distributions on the optimal number of users maximizing the sum rate is characterized. Moreover, by adopting a realistic power consumption model which accounts for the transmit power, circuit power and signal processing power, the energy efficiency of the system is studied. In particular, closed-form solutions for the key system parameters, such as the number of antennas and the optimal transmit signal-to-noise ratio maximizing the energy efficiency, are obtained. The findings of the paper suggest that user distribution has a significant impact on the system performance: for instance, the highest average sum rate is achieved with the center-intensive user distribution, while the lowest average sum rate is obtained with the edge-intensive user distribution. Also, more users can be served with the center-intensive user distribution.

Development of signal linkage simulator for verification of Ships energy management system algorithm (선박용 에너지 관리 시스템 알고리즘 검증을 위한 신호 연동 시뮬레이터 개발)

  • Lee, Jong-Hak;Oh, Ji-Hyun;Sim, Jae-Soon;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.881-889
    • /
    • 2022
  • As interest in environmental pollution caused by ship emissions is increasing worldwide, many studies are being conducted on the development of systems that increase energy efficiency to reduce ship emissions. In order to test the energy management system controller driven in real time on a large ship, it is necessary to perform the test through the simulator. In this study, addresses were set for each signal according to Modbus TCP/IP so that each control system and energy management system could be linked, and the algorithm was configured according to the signal flow. In addition, the signal generator was designed and manufactured so that each controller could artificially generate the signal collected from the vessel. As a result of the simulator production and interlocking, it was confirmed that each controller operated in real time performed its role appropriately, and that the algorithm of the ship energy management system was properly applied.

Electroreflectance Study of CIGS Thin Film Solar Cells

  • Jo, Hyun-Jun;Jeon, Dong-Hwan;Ko, Byoung Soo;Sung, Shi-Joon;Bae, In-Ho;Kim, Dae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.415-415
    • /
    • 2013
  • We have investigated the optical and electrical properties of the CIGS thin film solar cells by the electroreflectance (ER), photoreflectance (PR), photoluminescence (PL), and photocurrent (PC) spectroscopies at room temperature. The ER spectrum had two narrow signal regions and one broad signal region. We measured PL and PC to confirm the signals at low energy region (1.02~1.35 eV), so these signals are related to the CIGS thin film, and the high energy region (2.10~2.52 eV) is related to the CdS bandgap energy. The broad signal region (1.35~2.09 eV) is due to the internal electric field by the p-n junction from the comparison between PR and ER spectra, and we calculated the internal electric field by the p-n junction. In the high efficiency solar cell, the CdS signal of ER spectrum is narrower than the lower efficiency solar cells.

  • PDF

Energy-Efficient Power Allocation for Cognitive Radio Networks with Joint Overlay and Underlay Spectrum Access Mechanism

  • Zuo, Jiakuo;Zhao, Li;Bao, Yongqiang;Zou, Cairong
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.471-479
    • /
    • 2015
  • Traditional designs of cognitive radio (CR) focus on maximizing system throughput. In this paper, we study the joint overlay and underlay power allocation problem for orthogonal frequency-division multiple access-based CR. Instead of maximizing system throughput, we aim to maximize system energy efficiency (EE), measured by a "bit per Joule" metric, while maintaining the minimal rate requirement of a given CR system, under the total power constraint of a secondary user and interference constraints of primary users. The formulated energy-efficient power allocation (EEPA) problem is nonconvex; to make it solvable, we first transform the original problem into a convex optimization problem via fractional programming, and then the Lagrange dual decomposition method is used to solve the equivalent convex optimization problem. Finally, an optimal EEPA allocation scheme is proposed. Numerical results show that the proposed method can achieve better EE performance.