• Title/Summary/Keyword: sigmoid functionally graded

Search Result 31, Processing Time 0.02 seconds

A Study of Dynamic Instability for Sigmoid Functionally Graded Material Plates on Elastic Foundation (탄성지반위에 놓인 S형상 점진기능재료(FGM)판의 동적 불안정성에 관한 연구)

  • Lee, Won-Hong;Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.85-92
    • /
    • 2015
  • This article presents the dynamic instability response of sigmoid functionally graded material plates on elastic foundation using the higher-order shear deformation theory. The higher-order shear deformation theory has ability to capture the quadratic variation of shear strain and consequently shear stress through the plate thickness. The governing equations are then written in the form of Mathieu-Hill equations and then Bolotin's method is employed to determine the instability regions. The boundaries of the instability regions are represented in the dynamic load and excitation frequency plane. The results of dynamic instability analysis of sigmoid functionally graded material plate are presented using the Navier's procedure to illustrate the effect of elastic foundation parameter on dynamic response. The relations between Winkler and Pasternak elastic foundation parameter are discussed by numerical results. Also, the effects of static load factor, power-law index and side-to-thickness ratio on dynamic instability analysis are investigated and discussed. In order to validate the present solutions, the reference solutions are used and discussed. The theoretical development as well as numerical solutions presented herein should serve as reference for the dynamic instability study of S-FGM plates.

Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure

  • Ramteke, Prashik Malhari;Panda, Subrata K.;Sharma, Nitin
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.865-875
    • /
    • 2019
  • The current article proposed to develop a geometrical model for the analysis and modelling of the uniaxial functionally graded structure using the higher-order displacement kinematics with and without the presence of porosity including the distribution. Additionally, the formulation is capable of modelling three different kinds of grading patterns i.e., Power-law, sigmoid and exponential distribution of the individual constituents through the thickness direction. Also, the model includes the distribution of porosity (even and uneven kind) through the panel thickness. The structural governing equation of the porous graded structure is obtained (Hamilton's principle) and solved mathematically by means of the isoparametric finite element technique. Initially, the linear frequency parameters are obtained for different geometrical configuration via own computer code. The comparison and the corresponding convergence studies are performed for the unidirectional FG structure for the validation purpose. Finally, the impact of different influencing parameters like aspect ratio (O), thickness ratio (S), curvature ratio (R/h), porosity index (λ), type of porosity (even or uneven), power-law exponent (n), boundary condition on the free vibration characteristics are obtained for the FG panel and discussed in details.

Nonlinear Analysis of Functionally Graded Materials Plates and Shells (점진기능재료(FGM) 판과 쉘의 비선형 해석)

  • Han, Sung-Cheon;Lee, Chang-Soo;Kim, Gi-Dong;Park, Weon-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.61-71
    • /
    • 2007
  • Navier's and Finite element solutions based on the first-order shear deformation theory are presented for the analysis of through-thickness functionally graded plates and shells. The functionally graded materials are considered: a sigmoid function is utilized for the mechanical properties through the thickness of the isotropic structure which varies smoothly through the plate and shell thickness. The formulation of a nonlinear 9-node Element-based Lagrangian shell element is presented for the geometrically nonlinear analysis. Natural-coordinate-based strains are used in present shell element. Numerical results of the linear and nonlinear analysis are presented to show the effect of the different top/bottom elastic modulus, loading conditions, aspect ratios and side-to-thickness ratios on the mechanical behaviors. Besides, the result according to the variation of the power-law index of isotropic functionally graded structures is investigated.

A Study of Structural Stability and Dynamics for Functionally Graded Material Plates and Shells using a 4-node Quasi-conforming Shell Element (4절점 준적합 쉘 요소를 이용한 점진기능재료(FGM) 판과 쉘의 구조적 안정 및 진동 연구)

  • Han, Sung-Cheon;Lee, Chang-Soo;Kim, Gi-Dong;Park, Weon-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.47-60
    • /
    • 2007
  • In this paper, we investigate the natural frequencies and buckling loads of functionally graded material (FGM) plates and shells, using a quasi-conforming shell element that accounts for the transverse shear strains and rotary inertia. The eigenvalue of the FGM plates and shells are calculated by varying the volume fraction of the ceramic and metallic constituents using a sigmoid function, but their Poisson's ratios of the FGM plates and shells are assumed to be constant. The expressions of the membrane, bending and shear stiffness of FGM shell element are more complicated combination of material properties than a homogeneous element. In order to validate the finite element numerical solutions, the Navier's solutions of rectangular plates based on the first-order shear deformation theory are presented. The present numerical solutions of composite and sigmoid FGM (S-FGM) plates are proved by the Navier's solutionsand various examples of composite and FGM structures are presented. The present results are in good agreement with the Navier's theoretical solutions.

Dynamic response of imperfect functionally graded plates: Impact of graded patterns and viscoelastic foundation

  • Hafida Driz;Amina Attia;Abdelmoumen Anis Bousahla;Farouk Yahia Addou;Mohamed Bourada;Abdeldjebbar Tounsi;Abdelouahed Tounsi;Mohammed Balubaid;S.R. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.91 no.6
    • /
    • pp.551-565
    • /
    • 2024
  • This study presents a methodical investigation into improving structural designs through the analytical examination of the dynamic behavior of functionally graded plates (FGPs) resting on viscoelastic foundations. By employing a four variable first-order shear deformation theory, the study computes non-dimensional frequencies for a variety of porous FGPs with diverse graded patterns and porosity distributions. Different gradient patterns of the plates are considered, and three distinct functions-sigmoid (S-FGM), exponential (E-FGM), and power-law (P-FGM)-are utilized to assess material performance in specific directions. The equations of motion are derived and solved using both Navier's method and Hamilton's principle. Analytical solutions for vibration frequency are provided to validate the proposed methodology against existing literature. Furthermore, a comprehensive parametric analysis is conducted, taking into account various factors such as ceramic material, porosity distribution, gradient index, length-to-thickness ratio, gradient pattern, and damping coefficient. The findings suggest that enhancing the damping coefficient of the viscoelastic foundation can significantly improve the free-vibrational response of functionally graded material plates.

Bending, Vibration and Buckling Analysis of Functionally Graded Material Plates (점진기능재료(FGM) 판의 휨, 진동 및 좌굴 해석)

  • Lee, Won-Hong;Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.1043-1049
    • /
    • 2008
  • In this paper, we investigate the static response. natural frequencies and buckling loads of functionally graded material (FGM) plates, using a Navier method. The eigenvalues of the FGM plates and shells are calculated by varying the volume fraction of the ceramic and metallic constituents using a sigmoid function, but their Poisson's ratios of the FGM plates and shells are assumed to be constant. The expressions of the membrane. bending and shear stiffness of FGM plates art more complicated combination of material properties than a homogeneous element. In order to validate the present solutions, the reference solutions of rectangular plates based on the classical theory are used. The various examples of composite and FGM structures are presented. The present results are in good agreement with the reference solutions.

Static analysis of functionally graded sandwich plates with porosities

  • Keddouri, Ahemd;Hadji, Lazreg;Tounsi, Abdelouahed
    • Advances in materials Research
    • /
    • v.8 no.3
    • /
    • pp.155-177
    • /
    • 2019
  • In this paper, a new displacement based high-order shear deformation theory is introduced for the static response of functionally graded sandwich plate with new definition of porosity distribution taking into account composition and the scheme of the sandwich plate. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory presented is variationally consistent, has strong similarity with classical plate theory in many aspects, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. Material properties of FGM layers are assumed to vary continuously across the plate thickness according to either power-law or sigmoid function in terms of the volume fractions of the constituents. The face layers are considered to be FG across each face thickness while the core is made of a ceramic homogeneous layer. Governing equations are derived from the principle of virtual displacements. The closed-form solution of a simply supported rectangular plate subjected to sinusoidal loading has been obtained by using the Navier method. Numerical results are presented to show the effect of the material distribution, the sandwich plate geometry and the porosity on the deflections and stresses of FG sandwich plates. The validity of the present theory is investigated by comparing some of the present results with other published results.

Three dimensional dynamic response of functionally graded nanoplates under a moving load

  • Hosseini-Hashemi, Shahrokh;Khaniki, Hossein Bakhshi
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.249-262
    • /
    • 2018
  • In this paper, reaction of functionally graded (FG) thick nanoplates resting on a viscoelastic foundation to a moving nanoparticle/load is investigated. Nanoplate is assumed to be thick by using second order shear deformation theory and small-scale effects are taken into account in the framework of Eringen's nonlocal theory. Material properties are varied through the thickness using FG models by having power-law, sigmoid and exponential functions for material changes. FG nanoplate is assumed to be on a viscoelastic medium which is modeled using Kelvin-Voight viscoelastic model. Galerkin, state space and fourth-order Runge-Kutta methods are employed to solve the governing equations. A comprehensive parametric study is presetned to show the influence of different parameters on mechanical behavior of the system. It is shown that material variation in conjunction with nonlocal term have a significant effect on the dynamic deformation of nanoplate which could be used in comprehending and designing more efficient nanostructures. Moreover, it is shown that having a viscoelastic medium could play an important role in decreasing these dynamic deformations. With respect to the fresh studies on moving atoms, molecules, cells, nanocars, nanotrims and point loads on different nanosctructures using scanning tunneling microscopes (STM) and atomic force microscopes (AFM), this study could be a step forward in understanding, predicting and controlling such kind of behaviors by showing the influence of the moving path, velocity etc. on dynamic reaction of the plate.

Nonlocal elasticity effects on free vibration properties of sigmoid functionally graded material nano-scale plates (S형상 점진기능재료 나노-스케일 판의 자유진동 특성에 미치는 비국소 탄성 효과)

  • Kim, Woo-Jung;Lee, Won-Hong;Park, Weon-Tae;Han, Sung-Cheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1109-1117
    • /
    • 2014
  • We study free vibration analysis of sigmoid functionally graded materials(S-FGM) nano-scale plates, using a nonlocal elasticity theory of Eringen in this paper. This theory has ability to capture the both small scale effects and sigmoid function in terms of the volume fraction of the constituents for material properties through the plate thickness. Numerical solutions of S-FGM nano-scale plate are presented using this theory to illustrate the effect of nonlocal theory on natural frequency of the S-FGM nano-scale plates. The relations between nonlocal and local theories are discussed by numerical results. Further, effects of (i) power law index (ii) nonlocal parameters, (iii) elastic modulus ratio and (iv) thickness and aspect ratios on nondimensional frequencies are investigated. In order to validate the present solutions, the reference solutions are compared and discussed. The results of S-FGM nano-scale plates using the nonlocal theory may be the benchmark test for the free vibration analysis.

Thermal buckling analysis of functionally graded sandwich cylindrical shells

  • Daikh, Ahmed Amine
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.4
    • /
    • pp.335-351
    • /
    • 2020
  • Thermal buckling of functionally graded sandwich cylindrical shells is presented in this study. Material properties and thermal expansion coefficient of FGM layers are assumed to vary continuously through the thickness according to a sigmoid function and simple power-law distribution in terms of the volume fractions of the constituents. Equilibrium and stability equations of FGM sandwich cylindrical shells with simply supported boundary conditions are derived according to the Donnell theory. The influences of cylindrical shell geometry and the gradient index on the critical buckling temperature of several kinds of FGM sandwich cylindrical shells are investigated. The thermal loads are assumed to be uniform, linear and nonlinear distribution across the thickness direction. An exact simple form of nonlinear temperature rise through its thickness taking into account the thermal conductivity and the inhomogeneity parameter is presented.