• Title/Summary/Keyword: siderophores

Search Result 66, Processing Time 0.024 seconds

Beneficial Effects of Fluorescent Pseudomonads on Seed Germination, Growth Promotion, and Suppression of Charcoal Rot in Groundnut (Arachis hypogea L.)

  • Shweta, Bhatia;Maheshwari, Dinesh Kumar;Dubey, Ramesh Chand;Arora, Daljit Singh;Bajpai, Vivek K.;Kang, Sun-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1578-1583
    • /
    • 2008
  • Rhizobacteria are used as inoculants to enhance crop yield and for biological control of fungal pathogens. Fluorescent pseudomonads isolated from the rhizosphere of groundnut showed suppression of the phytopathogen Macrophomina phaseolina that causes charcoal rot of groundnut, an economically important agroproduct. Two strains of fluorescent pseudomonads, designated as PS1 and PS2, were selected as a result of in vitro antifungal activity. After 5 days of incubation at $28{\pm}1^{\circ}C$, both PS1 and PS2 caused clear inhibition zones in dual cultures, restricting the growth of M. phaseolina by 71 % and 74%, respectively. Both the strains were capable of producing siderophores, indole acetic acid, and hydrocyanic acid, and causing phosphate solubilization under normal growth conditions. These strains, when used as inoculants in groundnut, enhanced germination up to 15% and 30% with subsequent increase in grain yield by 66% and 77%, respectively. Conversely, when the pathogen alone was tested 57% decrease in yield was recorded. Thus the studies revealed the potential of the two pseudomonads not only as biocontrol agents against M. phaseolina, but also as a good growth promoter for groundnut.

A Leaf-Inhabiting Endophytic Bacterium, Rhodococcus sp. KB6, Enhances Sweet Potato Resistance to Black Rot Disease Caused by Ceratocystis fimbriata

  • Hong, Chi Eun;Jeong, Haeyoung;Jo, Sung Hee;Jeong, Jae Cheol;Kwon, Suk Yoon;An, Donghwan;Park, Jeong Mee
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.488-492
    • /
    • 2016
  • Rhodococcus species have become increasingly important owing to their ability to degrade a wide range of toxic chemicals and produce bioactive compounds. Here, we report isolation of the Rhodococcus sp. KB6, which is a new leaf-inhabiting endophytic bacterium that suppresses black rot disease in sweet potato leaves. We determined the 7.0 Mb draft genome sequence of KB6 and have predicted 19 biosynthetic gene clusters for secondary metabolites, including heterobactins, which are a new class of siderophores. Notably, we showed the first internal colonization of host plants with Rhodococcus sp. KB6 and discuss its potential as a biocontrol agent for sustainable agriculture.

Biocontrol Traits and Antagonistic Potential of Bacillus amyloliquefaciens Strain NJZJSB3 Against Sclerotinia sclerotiorum, a Causal Agent of Canola Stem Rot

  • Wu, Yuncheng;Yuan, Jun;Raza, Waseem;Shen, Qirong;Huang, Qiwei
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1327-1336
    • /
    • 2014
  • Bacillus amyloliquefaciens strain NJZJSB3 has shown antagonism of several phytopathogens in vitro, especially Sclerotinia sclerotiorum. Both the broth culture and cell suspension of strain NJZJSB3 could completely protect the detached leaves of canola (Brassica napus) from S. sclerotiorum infection. In pot experiments, the application of strain NJZJSB3 cell suspension ($10^8CFU/ml$) decreased the disease incidence by 83.3%, a result similar to commercially available fungicide (Dimetachlone). In order to investigate the potential biocontrol mechanisms of strain NJZJSB3, the nonvolatile antifungal compounds it produces were identified as iturin homologs using HPLC-ESI-MS. Antifungal volatile organic compounds were identified by gas chromatography-mass spectrometry. The detected volatiles toluene, phenol, and benzothiazole showed antifungal effects against S. sclerotiorum in chemical control experiments. Strain NJZJSB3 also produced biofilm, siderophores and cell-wall-degrading enzymes (protease and ${\beta}$-1,3-glucanase). These results suggest that strain NJZJSB3 can be a tremendous potential agent for the biological control of sclerotinia stem rot.

Iron Increases Susceptibilities of Pseudomonas aeruginosa to Ofloxacin by Increasing the Permeability

  • 김숙영;김진숙;남혜란;정유선;이연희
    • Korean Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.265-265
    • /
    • 2002
  • Iron increased the susceptibilities of clinical isolates Pseudomonas aeruginosa to quinolones. In the presence of iron, increased susceptibilities to ofloxacin were observed in twenty-six out of thirty isolates and with no change in four isolates. In the case of norfloxacin, iran increased susceptibilities of twelve isolates but did not render any change in eighteen isolates. In the case of ciprofloxacin, iron decreased the MICs (Minimal Inhibitory Concentration) of twenty isolates, increased the MIC of one isolate, and did net change the MICs of nine isolates. To find out how iron increased susceptibility to ofloxacin, bacterial cells were grown in Muller Hinton (MH) media and succinate minimal media (SMM) to induce iran acquisition systems and the intracellular ofloxacin concentrations were assayed in the presence of iron. The addition of iron to the media decreased the MICs of cells whether they were grown in MH or SMM. Siderophores, carbonyl cyanide m-chlorophenylhydrazone (an inhibiter of proton motive force), and ouabain (an inhibitor of ATPase) did not decrease the effect of iron. Results suggested that the increase in the intracellular ofloxacin concentration by iron is accomplished not by decreasing the efflux but by increasing the of ofloxacin permeability.

Isolation and Characterization of a Plant Growth-Promoting Rhizobacterium, Serratia sp. SY5

  • Koo, So-Yeon;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1431-1438
    • /
    • 2009
  • The role of plant growth-promoting rhizobacteria (PGPR) in the phytoremediation of heavy-metal-contaminated soils is important in overcoming its limitations for field application. A plant growth-promoting rhizobacterium, Serratia sp. SY5, was isolated from the rhizoplane of barnyard grass (Echinochloa crus-galli) grown in petroleum and heavy-metal-contaminated soil. This isolate has shown capacities for indole acetic acid production and siderophores synthesis. Compared with a non-inoculated control, the radicular root growth of Zea mays seedlings inoculated with SY5 can be increased by 27- or 15.4-fold in the presence of 15 mg-Cd/l or 15 mg-Cu/l, respectively. The results from hydroponic cultures showed that inoculation of Serratia sp. SY5 had a favorable influence on the initial shoot growth and biomass of Zea mays under noncontaminated conditions. However, under Cd-contaminated conditions, the inoculation of SY5 significantly increased the root biomass of Zea mays. These results indicate that Serratia sp. SY5 can serve as a promising microbial inoculant for increased plant growth in heavy-metal-contaminated soils to improve the phytoremediation efficiency.

Growth of Stahylococcus aureus with Defective Siderophore Production in Human Peritoneal Dialysate Solution

  • Park, Ra-Young;Sun, Hui-Yu;Choi, Mi-Hwa;Bae, Young-Hoon;Shin, Sung-Heui-
    • Journal of Microbiology
    • /
    • v.43 no.1
    • /
    • pp.54-61
    • /
    • 2005
  • In this study, we attempted to determine the effects of iron-availability and the activity of the bacterial iron-uptake system (IUS) on the growth of Staphylococcus aureus in human peritoneal dialysate (HPD) solution. A streptonigrin-resistant S. aureus (SRSA) strain, isolated from S. aureus ATCC 6538, exhibited defective siderophore production, thereby resulting in ineffective uptake of iron from low iron-saturated transferrin. The growth of both strains was stimulated in HPD solution supplemented with FeCl_3 and holotransferrin, but growth was inhibited in HPD solution which had been supplemented with apotransferrin and dipyridyl. The SRSA strain grew less robustly than did its parental strain in both iron-supplemented HPD solution and regular HPD solution. These results indicate that iron-availability and siderophore-mediated IUS activity in particular, the ability to produce siderophores and thus capture iron from low iron-saturated transferrin play critical roles in the growth of S. aureus in HPD solution. Our results also indicated that the possibility of using iron chelators as therapeutic or preventive agents warrants further evaluation.

Isolation and Characterization of an Antifungal and Plant Growth-Promoting Microbe

  • Park, Se Won;Yang, Hee-Jong;Seo, Ji Won;Kim, Jinwon;Jeong, Su-ji;Ha, Gwangsu;Ryu, Myeong Seon;Yang, Hee Gun;Jeong, Do-Youn;Lee, Hyang Burm
    • The Korean Journal of Mycology
    • /
    • v.49 no.4
    • /
    • pp.441-454
    • /
    • 2021
  • Fungal diseases including anthracnose, stem rot, blight, wilting, and root rot of crops are caused by phytopathogens such as Colletotrichum species, Sclerotinia sclerotiorum, Phytophthora species, and Fusarium oxysporum and F. solani which threaten the production of chili pepper. In this study, to identify biological control agents (BCAs) of phytopathogenic fungi, potentially useful Bacillus species were isolated from the field soils. We screened out five Bacillus strains with antagonistic capacity that are efficiently inhibiting the growth of phytopathogenic fungi. Bacillus species were characterized by the production of extracellular enzymes, siderophores, and indole-3-acetic acid (IAA). Furthermore, the influence of bacterial strains on the plant growth promoting activity and seedling vigor index were assessed using Brassica juncea as a model plant. Inoculation with Bacillus subtilis SRCM 121379 significantly increased the length of B. juncea shoots and roots by 45.6% and 52.0%, respectively. Among the bacterial isolates, Bacillus subtilis SRCM 121379 showed the superior enzyme activities, antagonistic capacity and plant growth promoting effects. Based on the experimental results, Bacillus subtilis SRCM 121379 (GenBank accession no. NR027552) was finally selected as a BCA candidate.

Zinc Ions Affect Siderophore Production by Fungi Isolated from the Panax ginseng Rhizosphere

  • Hussein, Khalid Abdallah;Joo, Jin Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.105-113
    • /
    • 2019
  • Although siderophore compounds are mainly biosynthesized as a response to iron deficiency in the environment, they also bind with other metals. A few studies have been conducted on the impact of heavy metals on the siderophore-mediated iron uptake by microbiome. Here, we investigated siderophore production by a variety of rhizosphere fungi under different concentrations of $Zn^{2+}$ ion. These strains were specifically isolated from the rhizosphere of Panax ginseng (Korean ginseng). The siderophore production of isolated fungi was investigated with chrome azurol S (CAS) assay liquid media amended with different concentrations of $Zn^{2+}$ (50 to $250{\mu}g/ml$). The percentage of siderophore units was quantified using the ultra-violet (UV) irradiation method. The results indicated that high concentrations of $Zn^{2+}$ ion increase the production of siderophore in iron-limited cultures. Maximum siderophore production by the fungal strains was detected at $Zn^{2+}$ ion concentration of $150{\mu}g/ml$ except for Mortierella sp., which had the highest siderophore production at $200{\mu}g/ml$. One potent siderophore-producing strain (Penicillium sp. JJHO) was strongly influenced by the presence of $Zn^{2+}$ ions and showed high identity to P. commune (100% using 18S-rRNA sequencing). The purified siderophores of the Penicillium sp. JJHO strain were chemically identified using UV, Fourier-transform infrared spectroscopy (FTIR), and matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF-MS) spectra.

Antagonistic and Plant Growth-Promoting Effects of Bacillus velezensis BS1 Isolated from Rhizosphere Soil in a Pepper Field

  • Shin, Jong-Hwan;Park, Byung-Seoung;Kim, Hee-Yeong;Lee, Kwang-Ho;Kim, Kyoung Su
    • The Plant Pathology Journal
    • /
    • v.37 no.3
    • /
    • pp.307-314
    • /
    • 2021
  • Pepper (Capsicum annuum L.) is an important agricultural crop worldwide. Recently, Colletotrichum scovillei, a member of the C. acutatum species complex, was reported to be the dominant pathogen causing pepper anthracnose disease in South Korea. In the present study, we isolated bacterial strains from rhizosphere soil in a pepper field in Gangwon Province, Korea, and assessed their antifungal ability against C. scovillei strain KC05. Among these strains, a strain named BS1 significantly inhibited mycelial growth, appressorium formation, and disease development of C. scovillei. By combined sequence analysis using 16S rRNA and partial gyrA sequences, strain BS1 was identified as Bacillus velezensis, a member of the B. subtilis species complex. BS1 produced hydrolytic enzymes (cellulase and protease) and iron-chelating siderophores. It also promoted chili pepper (cv. Nockwang) seedling growth compared with untreated plants. The study concluded that B. velezensis BS1 has good potential as a biocontrol agent of anthracnose disease in chili pepper caused by C. scovillei.

Phosphate solubilization by phosphate solubilizing microorganisms: insight into the mechanisms

  • Buddhi Charana, Walpola;Kodithuwakku Kankanange Indika Upali, Arunakumara;Min Ho, Yoon
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.463-481
    • /
    • 2022
  • Phosphorous (P) is considered to be one of the key essential elements demanded by crop plants. Approximately 70 - 90% of phosphatic fertilizers applied to crops are fixed in soil as Ca, Fe, and Al metal cations, which are insoluble and thus not readily available for plant uptake. Therefore, most soils are deficient in plant available P. This is usually rectified by applying phosphate fertilizers continuously, although this is not economically viable or environmentally acceptable. The present paper reviews the mechanisms involved with phosphate solubilization and mineralization by phosphate solubilizing microorganisms (PSMs) with the associated factors that determine the success. PSMs are effectively involved in mediating the bioavailability of soil P. Their contribution includes mineralization of organic P solubilization of inorganic P minerals, and storing sizable amounts of P in biomass through different mechanisms such as the production of organic and inorganic acids, H2S, siderophores, exopolysaccharides, and production of enzymes such as phosphatases, phytase, and phosphonatases/C-P lyases, which are capable of chelating the metal ions, forming complexes, and making plant available P. PSMs manifest a wide range of metabolic functions in different environments, resulting in significantly higher plant growth, enhanced soil properties, and increased biological activities. Therefore, development of bio-inoculants with efficient novel PSM strains and further investigations on exploring such strains from diverse ecological niches with multifunctional plant-growth-promoting traits are needed.