DOI QR코드

DOI QR Code

Isolation and Characterization of a Plant Growth-Promoting Rhizobacterium, Serratia sp. SY5

  • Koo, So-Yeon (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
  • Published : 2009.11.30

Abstract

The role of plant growth-promoting rhizobacteria (PGPR) in the phytoremediation of heavy-metal-contaminated soils is important in overcoming its limitations for field application. A plant growth-promoting rhizobacterium, Serratia sp. SY5, was isolated from the rhizoplane of barnyard grass (Echinochloa crus-galli) grown in petroleum and heavy-metal-contaminated soil. This isolate has shown capacities for indole acetic acid production and siderophores synthesis. Compared with a non-inoculated control, the radicular root growth of Zea mays seedlings inoculated with SY5 can be increased by 27- or 15.4-fold in the presence of 15 mg-Cd/l or 15 mg-Cu/l, respectively. The results from hydroponic cultures showed that inoculation of Serratia sp. SY5 had a favorable influence on the initial shoot growth and biomass of Zea mays under noncontaminated conditions. However, under Cd-contaminated conditions, the inoculation of SY5 significantly increased the root biomass of Zea mays. These results indicate that Serratia sp. SY5 can serve as a promising microbial inoculant for increased plant growth in heavy-metal-contaminated soils to improve the phytoremediation efficiency.

Keywords

References

  1. Abou-Shanab, R. A., J. S. Angle, and R. L. Chaney. 2006. Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol. Biochem. 38: https://doi.org/10.1016/j.soilbio.2006.04.045
  2. Abou-Shanab, R. A., J. S. Angle, T. A. Delorme, R. L. Chaney, P. van Berkum, H. Moawad, K. Ghanem, and H. A. Ghozlan. 2003. Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol. 158: 219-224 https://doi.org/10.1046/j.1469-8137.2003.00721.x
  3. Ahmad, F., I. Ahmad, and M. S. Khan. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163: 173-181 https://doi.org/10.1016/j.micres.2006.04.001
  4. Alstrorn, B. and B. Gerhardson. 1998. Differential reactions of wheat and pea genotypes to root inoculation with growth affecting rhizobacteria. Plant Soil 109: 263-269
  5. Belimov, A. A., N. Hontzeas, V. I. Safronova, S. V. Demchinskaya, G Piluzza, S. Bullitta, and B. R. Glick. 2005. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czem.). Soil Biol. Biochem. 37: 241-250 https://doi.org/10.1016/j.soilbio.2004.07.033
  6. Benhamou, N., S. Gagne, D. Le Quere, and L. Dehbi. 2000. Bacterial-mediated induced resistance in cucumber: Beneficial effect of the endophytic bacterium Serratia plymuthica on the protection against infection by Pythium ultimum. Biochem. Cell Biol. 90: 45-56
  7. Berg, G. 2000. Diversity of antifungal and plant-associated Serratia plymuthica strains. J. Appl. Microbiol. 88: 952-960 https://doi.org/10.1046/j.1365-2672.2000.01064.x
  8. Black, R. C., D. M. Choate, S. Bardhan, N. Revis, L. L. Barton, and T. G Zocco. 1993. Chemical transformation oftoxic metals by a Pseudomonas strain from a toxic waste site. Environ. Toxicol. Chem. 12: 1365-1376
  9. Braud, A., K. Jezequel, S. Bazot, and T. Lebeau. 2009. Enhanced phytoextraction of an agricultural Cr- and Pb- contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74: 280-286 https://doi.org/10.1016/j.chemosphere.2008.09.013
  10. Burd, G. I., D. G. Dixon, and B. R. Glick. 1998. A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl. Environ. Microbiol. 64: 3663-3668
  11. Burd, G. I., D. G. Dixon, and B. R. Glick. 2000. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can. J. Microbiol. 46: 237-245 https://doi.org/10.1139/cjm-46-3-237
  12. Carlot, M., A. Giacomini, and S. Casella. 2002. Aspects of plant-microbe interactions in heavy metal polluted soil. Acta Biotechnol. 22: 13-20 https://doi.org/10.1002/1521-3846(200205)22:1/2<13::AID-ABIO13>3.0.CO;2-9
  13. Compant, S., B. Duffy, J. Nowak, C. Clement, and E. A. Barka. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71: 4951-4959 https://doi.org/10.1128/AEM.71.9.4951-4959.2005
  14. Davies, P. J. 1995. The plant hormone concept: Concentration, sensitivity, and transport, pp. 13-18. In P. J. Davies (ed.). Plant Hormones: Physiology, Biochemistry, and Molecular Biology. Kluwer Acedemic Publishers, Dordrecht, The Netherlands
  15. De-Souza, M. P., C. P. A. Huang, N. Chee, and N. Terry. 1999. Rhizosphere bacteria enhance that accumulation of selenium and mercury in wetland plants. Planta 209: 259-263 https://doi.org/10.1007/s004250050630
  16. Di Gregorio, S., M. Barbafieri, S. Lampis, A. M. Sanangelantoni, E. Tassi, and G Vallini. 2006. Combined application of Triton X-100 and Sinorhizobium sp. Pb002 inoculum for the improvement of lead phytoextraction by Brassica juncea in EDTA amended soil. Chemosphere 63: 293-299 https://doi.org/10.1016/j.chemosphere.2005.07.020
  17. Dworkin, M. and J. W. Foster. 1958. Experiments with some microorganisms which utilize ethane and hydrogen. J. Bacteriol. 75: 592-603
  18. Farwell, A. J., S. Vesely, V. Nero, H. Rodriguez, K. McCormack, S. Shah, D. G. Dixon, and B. R. Click. 2007. Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environ. Pollut. 147: 540-545 https://doi.org/10.1016/j.envpol.2006.10.014
  19. Frankenberger, W. T. Jr and W. Brunner. 1983. Method of detection of auxin-indole-3-acetic acid in soil by high performance liquid chromatography. Soil Sci. Soc. Am. J. 47: 237-241 https://doi.org/10.2136/sssaj1983.03615995004700020012x
  20. Gerhardt, K. E., X.-D. Huang, B. R. Glick, and B. M. Greenberg. 2009. Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Sci. 176: 20-30 https://doi.org/10.1016/j.plantsci.2008.09.014
  21. Glick, B. R. 2003. Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnol. Adv. 21: 383-393 https://doi.org/10.1016/S0734-9750(03)00055-7
  22. Glick, B. R., C. L. Patten, G. Holguin, and D. M. Penrose. 1999. Biochemical and Genetic Mechanisms Used by Plant Growth Promoting Bacteria. Imperial College Press, London, England
  23. Grichko, V. P., B. Filby, and B. R. Glick. 2000. Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb, and Zn. J. Biotech. 81: 45-53 https://doi.org/10.1016/S0168-1656(00)00270-4
  24. Grimmont, F. and P. A. D. Grimmont. 1992. The genus Serratia, pp. 2823-2848. In A. Balowes, H. G Truper, M. Dworkin, W. Harder, and K. H. Schleifer. (eds.). The Prokaryotes - A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Application, 2nd Ed., Vol. 3. Springer Verlag, New York, NY
  25. Ike, A., R. Sriprang, H. Ono, Y. Murooka, and M. Yamashita. 2007. Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes. Chemosphere 66: 1670-1676 https://doi.org/10.1016/j.chemosphere.2006.07.058
  26. Imsande J. 1998. Iron, sulfur, and chlorophyll deficiencies: A need for an integrative approach in plant physiology. Physiol. Plant 103: 139-144 https://doi.org/10.1034/j.1399-3054.1998.1030117.x
  27. Joo, Y. H., Y. J. An, H. W.Ryu, and K. S. Cho. 2006. Isolation and characterization of psychrotrophic and halotolerant Rhodococcus sp. YHLT-2. J. Microbiol. Biotechnol. 16: 605-612
  28. Kalbe, C., P. Marten, and G. Berg. 1996. Members of the genus Serratia as beneficial rhizobacteria of oilseed rape. Microbiol. Res. 151: 4433-4400
  29. Kamensky, M., M. Ovadis, I. Chet, and L. Chemin. 2003. Soilborne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Boil. Biochem. 79: 584-589
  30. Kumino, T., K. Seaki, K. Nagaoka, H. Oyaizu, and S. Matsumoto. 2001. Characterization of copper-resistant bacterial community in rhizosphere of highly copper-contaminated soil. Eur. J. Soil Biol. 37: 95-102 https://doi.org/10.1016/S1164-5563(01)01070-6
  31. Ma, Y., M. Rajkumar, and H. Freitas. 2009. Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. J. Hazard Mater. doi:10.1016/j.jhazmat.2008.12.018
  32. Ma, Y., M. Rajkumar, and H. Freitas. 2009. Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassicajuncea. J. Environ. Manage. 90: 831-837 https://doi.org/10.1016/j.jenvman.2008.01.014
  33. Ma, Y., M. Rajkumar, and H. Freitas. 2009. Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere doi:10.1016/j.chemoshpere.2009.01.056
  34. McInroy, J. A. and J. W. Kloepper. 1995. Survey of indigenous bacterial endophytes from cotton and sweet com. Plant Soil 173: 337-342 https://doi.org/10.1007/BF00011472
  35. Meagher, R. B. 2000. Phytoremediation of toxic elemental and organic pollutants. Curr. Opin. Plant Biol. 3: 153-162 https://doi.org/10.1016/S1369-5266(99)00054-0
  36. Poonguzhali, S., M. Madhaiyan, and T. Sa. 2006. Cultivation-dependent characterization of rhizobacterial communities from field grown Chinese cabbage Brassica campestris ssp. pekinensis and screening of traits for potential plant growth promotion. Plant Soil 286: 167-180 https://doi.org/10.1007/s11104-006-9035-1
  37. Rai, U. N., K. Pandey, S. Sinha, A. Singh, R. Saxena, and D. K. Gupta. 2004. Revegetating fly ash landfills with Prosopis juliflora L.: Impact of different amendments and Rhizobium inoculation. Environ. Int. 30: 293-300 https://doi.org/10.1016/S0160-4120(03)00179-X
  38. Rajkumar, M., R. Nagendran, K. J. Lee, W. H. Lee, and S. Z. Kim. 2005. Influence of plant growth promoting bacteria and Cr on the growth of Indian mustard. Chemosphere 62: 741-748
  39. Schwyn, B. and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56 https://doi.org/10.1016/0003-2697(87)90612-9
  40. Sheng, X.-F. and J.-J. Xia. 2006. Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64: 1036-1042 https://doi.org/10.1016/j.chemosphere.2006.01.051
  41. Sheng, X.-F., J.-J. Xia, C.-Y. Jiang, L.-Y. He, and M. Qian. 2008. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ. Pollut. 156: 1164-1170 https://doi.org/10.1016/j.envpol.2008.04.007
  42. Stanley, R., M. Brown, N. Pool, D. Rodgerson, C. Sigee, C. Knight, H. Ivin, A. S. Epton, and C. Leifert. 1994. Biocontrol of post-harvest fungal diseases on Dutch white cabbage by Pseudomonas and Serratia antagonists in storage trials. Plant Pathol. 43: 605-611 https://doi.org/10.1111/j.1365-3059.1994.tb01597.x
  43. Wang, Y., H. N. Brown, D. E. Crowley, and P. J. Szaniszlo. 1993. Evidence for direct utilization of a siderophore, ferroxamine B, in axenically grown cucumber. Plant Cell Environ. 16: 579-585 https://doi.org/10.1111/j.1365-3040.1993.tb00906.x

Cited by

  1. Stimulatory effect of phosphate-solubilizing bacteria on plant growth, stevioside and rebaudioside-A contents of Stevia rebaudiana Bertoni vol.46, pp.2, 2009, https://doi.org/10.1016/j.apsoil.2010.08.008
  2. Genetic Diversity of Cultivable Plant Growth-Promoting Rhizobacteria in Korea vol.21, pp.8, 2009, https://doi.org/10.4014/jmb.1101.01031
  3. Rhizoremediation of diesel-contaminated soil using the plant growth-promoting rhizobacterium Gordonia sp. S2RP-17 vol.22, pp.3, 2009, https://doi.org/10.1007/s10532-010-9432-2
  4. Comparative efficiency of phosphate-solubilizing bacteria under greenhouse conditions for promoting growth and aloin-A content ofAloe barbadensis vol.58, pp.4, 2012, https://doi.org/10.1080/03650340.2010.522574
  5. Isolation and identification of phosphate solubilizing bacteria able to enhance the growth and aloin-A biosynthesis of Aloe barbadensis Miller vol.167, pp.6, 2009, https://doi.org/10.1016/j.micres.2012.02.004
  6. Promotion of growth, health and stress tolerance of Styrian oil pumpkins by bacterial endophytes vol.134, pp.3, 2009, https://doi.org/10.1007/s10658-012-0033-2
  7. Friend or foe? A review of the mechanisms that driveSerratiatowards diverse lifestyles vol.59, pp.9, 2009, https://doi.org/10.1139/cjm-2013-0343
  8. Intra-specific diversity of Serratia marcescens in Anopheles mosquito midgut defines Plasmodium transmission capacity vol.3, pp.None, 2009, https://doi.org/10.1038/srep01641
  9. Draft Genome Sequence of a Plant Growth-Promoting Rhizobacterium, Serratia fonticola Strain AU-P3(3) vol.1, pp.6, 2013, https://doi.org/10.1128/genomea.00946-13
  10. Draft Genome Sequence of Plant-Growth-Promoting Rhizobacterium Serratia fonticola Strain AU-AP2C, Isolated from the Pea Rhizosphere vol.1, pp.6, 2013, https://doi.org/10.1128/genomea.01022-13
  11. Rhizosphere: its structure, bacterial diversity and significance vol.13, pp.1, 2014, https://doi.org/10.1007/s11157-013-9317-z
  12. Biofabricated Silver Nanoparticles Act as a Strong Fungicide against Bipolaris sorokiniana Causing Spot Blotch Disease in Wheat vol.9, pp.5, 2009, https://doi.org/10.1371/journal.pone.0097881
  13. Remediation of heavy metal contaminated ecosystem: an overview on technology advancement vol.12, pp.1, 2009, https://doi.org/10.1007/s13762-014-0542-y
  14. Characterization of Potential Plant Growth Promoting Rhizobacteria Isolated from Maize (Zea maysL.) in Central and Northern Benin (West Africa) vol.2015, pp.None, 2009, https://doi.org/10.1155/2015/901656
  15. Synergistic Effects of Plant Growth Promoting Rhizobacteria and Chitosan on In Vitro Seeds Germination, Greenhouse Growth, and Nutrient Uptake of Maize ( Zea mays L.) vol.2016, pp.None, 2009, https://doi.org/10.1155/2016/7830182
  16. Phosphate-solubilizing Bacillus sp. enhances growth, phosphorus uptake and oil yield of Mentha arvensis L vol.9, pp.4, 2009, https://doi.org/10.1007/s13205-019-1660-5
  17. Characterization of cadmium‐resistant rhizobacteria and their promotion effects on Brassica napus growth and cadmium uptake vol.59, pp.6, 2009, https://doi.org/10.1002/jobm.201800656
  18. Structure and variation of root-associated microbiomes of potato grown in alfisol vol.35, pp.12, 2009, https://doi.org/10.1007/s11274-019-2761-3
  19. Isolation and Characterization of Plant Growth-Promoting Endophytic Bacteria Paenibacillus polymyxa SK1 from Lilium lancifolium vol.2020, pp.None, 2009, https://doi.org/10.1155/2020/8650957
  20. Genomic Analysis of Serratia plymuthica MBSA-MJ1: A Plant Growth Promoting Rhizobacteria That Improves Water Stress Tolerance in Greenhouse Ornamentals vol.12, pp.None, 2009, https://doi.org/10.3389/fmicb.2021.653556
  21. Functional and Genomic Analysis of Rouxiella badensis SER3 as a Novel Biocontrol Agent of Fungal Pathogens vol.12, pp.None, 2009, https://doi.org/10.3389/fmicb.2021.709855