• Title/Summary/Keyword: shortening effect

Search Result 411, Processing Time 0.03 seconds

Nonlinear spectral collocation analysis of imperfect functionally graded plates under end-shortening

  • Ghannadpour, S. Amir M.;Kiani, Payam
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.557-568
    • /
    • 2018
  • An investigation is made in the present work on the post-buckling and geometrically nonlinear behaviors of moderately thick perfect and imperfect rectangular plates made-up of functionally graded materials. Spectral collocation approach based on Legendre basis functions is developed to analyze the functionally graded plates while they are subjected to end-shortening strain. The material properties in this study are varied through the thickness according to the simple power law distribution. The fundamental equations for moderately thick rectangular plates are derived using first order shear deformation plate theory and taking into account both geometric nonlinearity and initial geometric imperfections. In the current study, the domain of interest is discretized with Legendre-Gauss-Lobatto nodes. The equilibrium equations will be obtained by discretizing the Von-Karman's equilibrium equations and also boundary conditions with finite Legendre basis functions that are substituted into the displacement fields. Due to effect of geometric nonlinearity, the final set of equilibrium equations is nonlinear and therefore the quadratic extrapolation technique is used to solve them. Since the number of equations in this approach will always be more than the number of unknown coefficients, the least squares technique will be used. Finally, the effects of boundary conditions, initial geometric imperfection and material properties are investigated and discussed to demonstrate the validity and capability of proposed method.

Characterization of Purinergic Receptors in Rat Atrium (흰쥐 심방근에서의 Purinergic 수용체의 특성)

  • Kim, Jae-Ha
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.2
    • /
    • pp.181-190
    • /
    • 1994
  • In rat atrium the characteristics of purinergic receptors were investigated by observing the effects of some purinergic receptor agonists and antagonists on action potential and contractile force. The statistically significant effects of $ATP(10^{-6}{\sim}10^{-3}M)$ and adenosine $(10^{-6}{\sim}10^{-3}M)$ on normal action potential characteristics were a dose-dependent shortening of action potential duration $(APD_{90})$ by both agents and hyperpolarization by $ATP(10^{-4},10^{-3}M)$. $CAP(10^{-8}{\sim}10^{-4}M)$, an $A_1$ adenosine receptor agonist, shortened $(APD_{90})$ markedly in a dose-dependent manner and these effects were almost abolished by $DPCPX\;(10^{-6}\;M), an $A_1$, adenosine receptor antagonist, but not affected by $DMPX(2{\times}10^{-6}\;M)$, an $A_2$ adenosine receptor agonist. On the other hand, CGS $21680(10^{-7}{\sim}10^{-4}M)$, an $A_2$ adenosine receptor agonist, elicited a slight shortening of $(APD_{90})$ and these effects were inhibited by DPCPX but persisted in the presence of DPMX. Adenosine $(10^{-6}{\sim}10{\-4}\;M)$ decreased the basal contraction of atrial muscle in a dose-dependent manner and these effects were not inhibited by DMPX but by DPCPX. These results suggests that purinergic receptor agonists depress the cardiac activity by a short ening of action potential duration and this effect is mostly mediated by $A_1$ adenosine receptors in rat atrium.

  • PDF

Lactobacillus sakei S1 Improves Colitis Induced by 2,4,6-Trinitrobenzene Sulfonic Acid by the Inhibition of NF-κB Signaling in Mice

  • Jang, Se-Eun;Min, Sung-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.71-78
    • /
    • 2020
  • Lactobacillus sakei S1 strongly inhibits the expression of interleukin (IL)-6 and IL-1β in lipopolysaccharide-induced peritoneal macrophages by a mechanism for which lactic acid bacteria from kimchi that inhibit tumor necrosis factor-alpha (TNF-α) were isolated. Therefore, we further evaluated the protective effect of this strain on the colitis mouse model induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). TNBS significantly elevated myeloperoxidase (MPO) expression, macroscopic scores, and colon shortening. Oral L. sakei S1 administration resulted in reduction of TNBS-induced loss in body weight, colon shortening, MPO activity, expression of cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) and nuclear factor-kappa B (NF-κB). L. sakei S1 inhibited the expression of inflammatory cytokines IL-1β, IL-6 and TNF-α, induced by TNBS, but enhanced IL-10 expression. L. sakei S1 showed resistance to artificial digestive juices and adherence to intestinal epithelial Caco-2 cells. Thus, L. sakei S1 may inhibit the NF-κB pathway and be used in functional food to treat colitis.

식육의 연화증진에 관한 최근의 연구동향 - 적색육의 연도 증진에 이용되는 전기자극의 작용 -

  • 황인호
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2002.05a
    • /
    • pp.17-25
    • /
    • 2002
  • Application of electrical stimulation in the red meat species (eg. beef and sheep) processing has been erratic around the world and this may reflect an incomplete knowledge of how to optimise the technology. Although it is well established that stimulation increases the rate of post-mortem glycolysis other biochemical and biophysical effects have been implicated with the use of this technology. On the basis of currently available knowledge, this mini-review seeks to examine the current theories about the effect of stimulation on post-mortem muscle. The classical view that stimulation prevents muscle from shortening excessively during rigor development has been expanded to include the possibility that it also results in physical disruption of muscle structure. The interaction of these effects with the acceleration of the rate of proteolysis through activation of the calpain protease system has not been comprehensively reviewed in the past. As a result of conclusion driven, this article highlights several areas that may prove fruitful for further research. The challenge for further development of electrical stimulation systems is optimisation of the activation of the enzyme systems in parallel with manipulation of chilling regimes so as to ensure rigor mortis is achieved at temperatures which minimise shortening. The potential of regional stimulation of sections of the carcass to achieve this outcome is worthy of study given the different fibre composition of muscles and temperature gradients.

  • PDF

Modeling of a Two Arm Flexible Robot in Gravity (중력장에서 두개의 탄성팔을 가지는 로보트의 모델링)

  • 오재윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1075-1088
    • /
    • 1992
  • This paper presents techniques used to model a two arm experimental robot. Both arms are compliant and the robot operates in a vertical plane and is therefore influenced by gravity. The robot is being built to study different control strategies for robots containing compliant members. The system is built with extremely flexible members. This limits the required bandwidth of the control electronics, and mimics the flexible motions that are observed for stiffer faster robots. The objective of this paper is to develop a reduced order model of the robot system and to experimentally validate the model. Validation requires that the model includes gravitational effects. Therefore, an assumed modes model is developed which facilitates modeling of gravitational effects. In order to select the order and mode shapes for the model, an analytical solution is derived for a linearized continuous model. This is compared to the assumed modes model to determine the number of mode shapes needed to model the system. The final model, which includes shortening effects, correlates very well with experimental results.

An Experimental Study on Strength Properties of Early Strength Concrete for Reduction of Working Period in Apartment (공동주택 공기단축을 위해 개발된 조강 콘크리트의 강도 발현 특성에 관한 연구)

  • Jung, Yang-Hee;Lee, Jae-Hyun;Keum, Kyoung-Hun;Lee, Won-AM;Kim, Sun-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.157-160
    • /
    • 2009
  • The decision of the Form removal time which leads the early assuring strength of the concrete from Apartment construction is the fact which is important from Reducing the period of works and the economical efficiency side. Especially, with Complex building of recent times the same Tall building and Multiple Apartment Site which only follows in upgrade of interior construction of apartment site and shortening the frame construction period becomes very, importantly is the actual condition where the effort which is various for this is attempted. But is caused by with limit and economical efficiency problem of case concrete early strength revelation of most and is not put to practical use is the actual condition. Develops concrete mixture which is a utility from the research which sees hereupon and the effect which is economic leads construction duration shortening under maximizing boil.

  • PDF

Structural coupling mechanism of high strength steel and mild steel under multiaxial cyclic loading

  • Javidan, Fatemeh;Heidarpour, Amin;Zhao, Xiao-Ling;Al-Mahaidi, Riadh
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.229-242
    • /
    • 2018
  • High strength steel is widely used in industrial applications to improve the load-bearing capacity and reduce the overall weight and cost. To take advantage of the benefits of this type of steel in construction, an innovative hybrid fabricated member consisting of high strength steel tubes welded to mild steel plates has recently been developed. Component-scale uniaxial and multiaxial cyclic experiments have been conducted with simultaneous constant or varying axial compression loads using a multi-axial substructure testing facility. The structural interaction of high strength steel tubes with mild steel plates is investigated in terms of member capacity, strength and stiffness deterioration and the development of plastic hinges. The deterioration parameters of hybrid specimens are calibrated and compared against those of conventional steel specimens. Effect of varying axial force and loading direction on the hysteretic deterioration model, failure modes and axial shortening is also studied. Plate and tube elements in hybrid members interact such that the high strength steel is kept within its ultimate strain range to prevent sudden fracture due to its low ultimate to yield strain ratio while the ductile performance of plate governs the global failure mechanism. High strength material also significantly reduces the axial shortening in columns which prevents undesirable frame deformations.

Musculotendon Model to Represent Characteristics of Muscle Fatigue due to Functional Electrical Stimulation (기능적 전기자극에 의한 근육피로의 특성을 표현하는 근육 모델)

  • Lim, Jong-Kwang;Nam, Moon-Hyon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.8
    • /
    • pp.1046-1053
    • /
    • 1999
  • The musculotendon model is presented to show the declines in muscle force and shortening velocity during muscle fatigue due to the repeated functional electrical stimulation (FES). It consists of the nonlinear activation and contraction dynamics including physiological concepts of muscle fatigue. The activation dynamics represents $Ca^{2+}$ binding and unbinding mechanism with troponins of cross-bridges in sarcoplasm. It has the constant binding rate or activation time constant and two step nonlinear unbinding rate or inactivation time constant. The contraction dynamics is the modified Hill type model to represent muscle force - length and muscle force - velocity relations. A muscle fatigue profile as a function of the intracellular acidification, pH is applied into the contraction dynamics to represent the force decline. The computer simulation shows that muscle force and shortening velocity decline in stimulation time. And we validate the model. The model can predicts the proper muscle force without changing its parameters even when existing the estimation errors of the optimal fiber length. The change in the estimate of the optimal fiber length has an effect only on muscle time constant in transient period not on the tetanic force in the steady-state and relaxation periods.

  • PDF

Construction Process & Technologies Applied to Parc.1 Project

  • Hoi-soo, Seo;Jae-min, Baek
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.3
    • /
    • pp.181-187
    • /
    • 2022
  • POSCO E&C has completed Parc.1 project successfully. The construction period was 42months, and 1.5 million workers were participated till completion. To meet schedule management and quality control, POSCO E&C has adopted a lot of technologies such as GPS measurement, 3D scanning, vibration control, stack effect control, column shortening control, etc

An analytical modeling for the two-dimensional field effect of a short channel GaAs MESFET and SOI-structured Si JFET (단채널 GaAs MESFET 및 SOI 구조의 Si JFET의 2차원 전계효과에 대한 해석적 모델에 대한 연구)

  • Choi Jin-Wook;Ji Soon-Koo;Choi Soo-Hong;Suh Chung-Ha
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.1
    • /
    • pp.25-32
    • /
    • 2005
  • In this paper, it is attempted to provide a unified explanation for typical short channel GaAs MESFET’s and SOI-structured Si JFET's behaviors such as: i) drain voltage-induced threshold voltage roll-off, ii) finite output ac resistance beyond the saturation, and iii) weak dependence of the drain saturation current on the channel length. Replacing the conventional GCA with a new assumption that is suggested in order to include the longitudinal field variation, and taking into account the channel current continuity and the field-dependent mobility, we can derive the two-dimensional potential in both depletion region and undepleted conducting channel. Obtained expressions for the threshold voltage and the drain current will be considerably accurate over the entire operating region. Moreover, in comparison with the conventional channel length shortening models, our model seems to be more reasonable in explaining the Early effect.