• 제목/요약/키워드: short-term deflection

검색결과 25건 처리시간 0.021초

원전 냉각수 취수용 지중매설 GFRP관의 구조적 거동 조사 (An Investigation of Structural Behavior of Underground Buried GFRP Pipe in Cooling Water Intake for the Nuclear Power Plant)

  • 이형규;박준석
    • 복합신소재구조학회 논문집
    • /
    • 제6권2호
    • /
    • pp.91-96
    • /
    • 2015
  • GRP pipe (Glass-fiber Reinforced Plastic Pipe) lines making use of FRP (Fiber Reinforced Plastic) are generally thinner, lighter, and stronger than the existing concrete or steel pipe lines, and it is excellent in stiffness/strength per unit weight. In this study, we present the result of field test for buried GRP pipes with large diameter(2,400mm). The vertical and horizontal ring deflections are measured for 387 days. The short-term deflection measured by the field test is compared with the result predicted by the Iowa formula. In addition, the long-term ring deflection is predicted by using the procedure suggested in ASTM D 5365(ANNEX) in the range of 40 to 60 years of service life of the pipe based on the experimental results. From the study, it was found that the long-term vertical and horizontal ring deflection up to 60 years is less than the 5% ring deflection limitation.

지중매설 폴리에틸렌 관의 단기거동 예측 (Prediction of Short-term Behavior of Buried Polyethylene Pipe)

  • 박준석;이영근;김선희;박정환;김응호
    • 상하수도학회지
    • /
    • 제26권6호
    • /
    • pp.907-914
    • /
    • 2012
  • Flexible pipes take advantage of their ability to move, or deflect, under loads without structural damage. Common types of flexible pipes are manufactured from polyethylene (PE), polyvinyl chloride (PVC), steel, glass fiber reinforced thermosetting polymer plastic (GFRP), and aluminum. In this paper, we present the result of an investigation pertaining to the short-term behavior of buried polyethylene pipe. The mechanical properties of the polyethylene pipe produced in the domestic manufacturer are determined and the results are reported in this paper. In addition, vertical ring deflection is measured by the laboratory model test and the finite element analysis (FEA) is also conducted to simulate the short-term behavior of polyethylene pipe buried underground. Based on results from soil-pipe interaction finite element analyses of polyethylene pipe is used to predict the vertical ring deflection and maximum bending strain of polyethylene pipe.

강섬유보강콘크리트 연속슬래브 휨성능의 장기거동 특성 (Long-Term Characteristics on Flexural Performance of Steel Fiber Reinforced Concrete Continuous Slab)

  • 홍건호;정승원
    • 대한건축학회논문집:구조계
    • /
    • 제35권10호
    • /
    • pp.163-170
    • /
    • 2019
  • In spite of various advantages, steel fiber reinforced concrete is still limited in its use due to the insufficient research results on the structural performance and design criteria. This study evaluated the long-term behavior of the steel fiber reinforced concrete slabs by long-term loading experiments based on the short-term load bearing capacity of steel fiber reinforced concrete slabs obtained from previous studies. In this study, long-term loading experiments were carried out on Total four 2-span continuous slab specimens were tested for examining the long-term behavior of steel fiber reinforced concrete members. Long-term behavior characteristics of members were evaluated by measuring the long-term deflection, drying shrinkage, the number and width of cracks. Experimental results showed that the instant deflection of the steel fiber reinforced concrete slab is about 50% of the normal reinforced concrete slab. And, it was analyzed that the long-term deflection of the specimen using steel fiber reinforced concrete was about 10~20% lower than that of normal concrete by the long-term deflection over 100 days. In addition, the slab specimen using steel fiber reinforced concrete was evaluated to have just 70% of the number and width of cracks compared with normal concrete specimens.

Dynamic deflection monitoring method for long-span cable-stayed bridge based on bi-directional long short-term memory neural network

  • Yi-Fan Li;Wen-Yu He;Wei-Xin Ren;Gang Liu;Hai-Peng Sun
    • Smart Structures and Systems
    • /
    • 제32권5호
    • /
    • pp.297-308
    • /
    • 2023
  • Dynamic deflection is important for evaluating the performance of a long-span cable-stayed bridge, and its continuous measurement is still cumbersome. This study proposes a dynamic deflection monitoring method for cable-stayed bridge based on Bi-directional Long Short-term Memory (BiLSTM) neural network taking advantages of the characteristics of spatial variation of cable acceleration response (CAR) and main girder deflection response (MGDR). Firstly, the relationship between the spatial and temporal variation of the CAR and the MGDR is described based on the geometric deformation of the bridge. Then a data-driven relational model based on BiLSTM neural network is established using CAR and MGDR data, and it is further used to monitor the MGDR via measuring the CAR. Finally, numerical simulations and field test are conducted to verify the proposed method. The root mean squared error (RMSE) of the numerical simulations are less than 4 while the RMSE of the field test is 1.5782, which indicate that it provides a cost-effective and convenient method for real-time deflection monitoring of cable-stayed bridges.

플랫 플레이트의 장단기 처짐에 대한 중공 슬래브의 자중저감 효과 분석 (Analysis of Weight Reduction Effect of Void Slab on Long and Short Term Deflections of Flat Plates)

  • 김재요
    • 한국전산구조공학회논문집
    • /
    • 제30권4호
    • /
    • pp.343-350
    • /
    • 2017
  • RC 플랫 플레이트 시스템은 공기단축, 시공성 향상, 층고 절감 등의 장점이 있으나, 장스팬 적용 시 슬래브의 작은 휨강성으로 인해 균열 손상 및 과다 처짐이 발생하는 경향이 있다. 특히, 시공 중 슬래브 자중에 의한 과하중의 작용이 슬래브의 장단기 처짐을 증가시킬 수 있다. 이러한 문제점은 자중 저감이라는 장점을 갖고 있는 중공 슬래의 사용을 통해 해결할 수 있다. 이 연구에서는 슬래브 처짐에 대한 중공 슬래브의 자중저감 효과를 분석하기 위하여 변수연구를 수행한다. 콘크리트 강도, 슬래브 시공주기, 동바리 지지층수, 압축철근비, 인장철근비 등의 변수조건들을 포함하여, 시공단계, 콘크리트 균열, 장기 효과를 고려한 시공하중 및 처짐을 산정한다. 일반 슬래브와 중공 슬래브에 대한 시공 중 단기처짐과 완공 후 장기처짐을 비교하고, 슬래브 처짐에 대한 중공 슬래브의 효과를 분석한다.

거푸집 패널이 부착된 중공슬래브의 안전성 평가 (Safety Evaluation of Void Plywood Slab System with form Work Panel)

  • 허무원;채경훈;박태원;강현욱;박현수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권6호
    • /
    • pp.185-192
    • /
    • 2021
  • 본 연구에서는 거푸집 패널이 부착된 실물 스케일의 중공슬래브 Mock-up을 제작하여 즉시 처짐 및 장기 처짐에 대한 플랫 플레이트 중공 슬래브의 안전성을 평가하고자 한다. 중공재가 적용된 Mock-up 실험체의 중공률은 24%로 설계하였다. 콘크리트 블록 하중 재하 시 슬래브의 가장 중앙부의 처짐인 No2의 경우 재하 시 처짐이 8.88mm 발생하였으며 이는 즉시 처짐에 대한 기준 값(ln/240=17.93mm)에 비하여 안전한 값을 나타내고 있다. 3개월간 처짐 량 계측 결과, 중앙부 처짐 량은 초기 처짐에서 6.792mm 더 추가되어 처짐이 발생하였지만, 이는 국내 구조 기준에서 제시하고 있는 사용하중에 의한 기준 값을 만족하고 있는 것으로 나타났다.

Simulations of short- and long-term deflections of flat plates considering effects of construction sequences

  • Kim, Jae-Yo;Kang, Su-Min
    • Structural Engineering and Mechanics
    • /
    • 제62권4호
    • /
    • pp.477-485
    • /
    • 2017
  • The structural designs of RC flat plates that have no flexural stiffness by boundary beams may be governed not by strength conditions but by serviceabilities. Specially, since over-loading and tensile cracking in early-aged slabs significantly increase the short- and long-term deflections of a flat plate system, a construction sequence and its impact on the slab deflections may be decisive factors in designs of flat plate systems. In this study, the procedure of simulating slab deflections with considering construction sequences, concrete cracking, and long-term effects is proposed. The proposed method is practically useful, as it can predict well the slab deflections at construction and service stages only with a few input data. The proposed method is verified by comparisons with measured results in a real-scale test.

복잡(複雜)한 형상(形狀)의 초기(初期)처짐을 가진 실선(實船)의 Panel의 압괴강도(壓壞强度) 간이추정법(簡易推定法) (Estimation of the Ultimate Compressive Strength of Actual Ship Panels with Complex Initial Deflection)

  • 백점기;김건
    • 대한조선학회지
    • /
    • 제25권1호
    • /
    • pp.33-46
    • /
    • 1988
  • This paper describes a simplified method for estimation of the ultimate compressive strength of actual ship panels with initial deflection of complex shape. The proposed method consists of the elastic analysis using the large deflection theory and the rigid-plastic analysis based on the collapse mechanism which also includes the large deformation effect. In order to reduce the computing time for the elastic large deflection theory and the rigid-plastic analysis based on the collapse mechanism which also includes the large deformation effect. In order to reduce the computing time for the elastic large deflection analysis, only one term of Fourier series for the plate deflection is considered. The results of the proposed method are in good agreement with those calculated by the elasto-plastic large deflection analysis using F.E.M. and the computing time of the proposed method is extremely short compared with that of F.E.M.

  • PDF

Experimental tests on biaxially loaded concrete-encased composite columns

  • Tokgoz, Serkan;Dundar, Cengiz
    • Steel and Composite Structures
    • /
    • 제8권5호
    • /
    • pp.423-438
    • /
    • 2008
  • This paper reports an experimental investigation of the behaviour of concrete-encased composite columns subjected to short-term axial load and biaxial bending. In the study, six square and four L-shaped cross section of both short and slender composite column specimens were constructed and tested to examine the load-deflection behaviour and to obtain load carrying capacities. The main variables in the tests were considered as eccentricity of applied axial load, concrete compressive strength, cross section, and slenderness effect. A theoretical procedure considering the nonlinear behaviour of the materials is proposed for determination of the behaviour of eccentrically loaded short and slender composite columns. Two approaches are taken into account to describe the flexural rigidity (EI) used in the analysis of slender composite columns. Observed failure mode and experimental and theoretical load-deflection behaviour of the specimens are presented in the paper. The composite column specimens and also some composite columns available in the literature have been analysed and found to be in good agreement with the test results.