• Title/Summary/Keyword: short term neural network

Search Result 395, Processing Time 0.028 seconds

Implementation of Artificial Hippocampus Algorithm Using Weight Modulator (가중치 모듈레이터를 이용한 인공 해마 알고리즘 구현)

  • Chu, Jung-Ho;Kang, Dae-Seong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.393-398
    • /
    • 2007
  • In this paper, we propose the development of Artificial Hippocampus Algorithm(AHA) which remodels a principle of brain of hippocampus. Hippocampus takes charge auto-associative memory and controlling functions of long-term or short-term memory strengthening. We organize auto-associative memory based 4 steps system (EC, DG CA3, and CA1) and improve speed of teaming by addition of modulator to long-term memory teaming. In hippocampus system, according to the 3 steps order, information applies statistical deviation on Dentate Gyrus region and is labeled to responsive pattern by adjustment of a good impression. In CA3 region, pattern is reorganized by auto-associative memory. In CA1 region, convergence of connection weight which is used long-term memory is learned fast a by neural network which is applied modulator. To measure performance of Artificial Hippocampus Algorithm, PCA(Principal Component Analysis) and LDA(Linear Discriminants Analysis) are applied to face images which are classified by pose, expression and picture quality. Next, we calculate feature vectors and learn by AHA. Finally, we confirm cognitive rate. The results of experiments, we can compare a proposed method of other methods, and we can confirm that the proposed method is superior to the existing method.

Short-Term Water Quality Prediction of the Paldang Reservoir Using Recurrent Neural Network Models (순환신경망 모델을 활용한 팔당호의 단기 수질 예측)

  • Jiwoo Han;Yong-Chul Cho;Soyoung Lee;Sanghun Kim;Taegu Kang
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.1
    • /
    • pp.46-60
    • /
    • 2023
  • Climate change causes fluctuations in water quality in the aquatic environment, which can cause changes in water circulation patterns and severe adverse effects on aquatic ecosystems in the future. Therefore, research is needed to predict and respond to water quality changes caused by climate change in advance. In this study, we tried to predict the dissolved oxygen (DO), chlorophyll-a, and turbidity of the Paldang reservoir for about two weeks using long short-term memory (LSTM) and gated recurrent units (GRU), which are deep learning algorithms based on recurrent neural networks. The model was built based on real-time water quality data and meteorological data. The observation period was set from July to September in the summer of 2021 (Period 1) and from March to May in the spring of 2022 (Period 2). We tried to select an algorithm with optimal predictive power for each water quality parameter. In addition, to improve the predictive power of the model, an important variable extraction technique using random forest was used to select only the important variables as input variables. In both Periods 1 and 2, the predictive power after extracting important variables was further improved. Except for DO in Period 2, GRU was selected as the best model in all water quality parameters. This methodology can be useful for preventive water quality management by identifying the variability of water quality in advance and predicting water quality in a short period.

Acoustic Event Detection in Multichannel Audio Using Gated Recurrent Neural Networks with High-Resolution Spectral Features

  • Kim, Hyoung-Gook;Kim, Jin Young
    • ETRI Journal
    • /
    • v.39 no.6
    • /
    • pp.832-840
    • /
    • 2017
  • Recently, deep recurrent neural networks have achieved great success in various machine learning tasks, and have also been applied for sound event detection. The detection of temporally overlapping sound events in realistic environments is much more challenging than in monophonic detection problems. In this paper, we present an approach to improve the accuracy of polyphonic sound event detection in multichannel audio based on gated recurrent neural networks in combination with auditory spectral features. In the proposed method, human hearing perception-based spatial and spectral-domain noise-reduced harmonic features are extracted from multichannel audio and used as high-resolution spectral inputs to train gated recurrent neural networks. This provides a fast and stable convergence rate compared to long short-term memory recurrent neural networks. Our evaluation reveals that the proposed method outperforms the conventional approaches.

Variation of ANN Model's Predictive Performance Concerning Short-term (<24 hrs) $SO_2$ Concentrations with Prediction Lagging Time

  • Park, Ok-Hyun;Sin, Ji-Young;Seok, Min-Gwang
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.E2
    • /
    • pp.63-73
    • /
    • 2008
  • In this study, neural network models (NNMs) were examined as alternatives to dispersion models in predicting the short-term $SO_2$ concentrations in a coastal area because the performances of dispersion models in coastal areas have been found to be unsatisfactory. The NNMs were constructed for various combinations of averaging time and prediction time in advance by using the historical data of meteorological parameters and $SO_2$ concentrations in 2002 in the coastal area of Boryeung, Korea. The NNMs were able to make much more accurate predictions of 1 hr $SO_2$ concentrations at ground level in the morning in coastal area than the atmospheric dispersion models such as fumigation models, ADMS3 and ISCST3 for identical conditions of atmospheric stability, area, and weather. Even when predictions of 24-h $SO_2$ concentrations were made 24 hours in advance, the predictions and measurements were in good accordance(correlation coefficient=0.65 for n=216). This accordance level could be improved by appropriate expansion of training parameters. Thus it may be concluded that the NNMs can be successfully used to predict short-term ground level concentrations averaged over time less than 24 hours even in complex terrain. The prediction performance of ANN models tends to improve as the prediction lagging time approaches the concentration averaging time, but to become worse as the lagging time departs from the averaging time.

Prediction for Energy Demand Using 1D-CNN and Bidirectional LSTM in Internet of Energy (에너지인터넷에서 1D-CNN과 양방향 LSTM을 이용한 에너지 수요예측)

  • Jung, Ho Cheul;Sun, Young Ghyu;Lee, Donggu;Kim, Soo Hyun;Hwang, Yu Min;Sim, Issac;Oh, Sang Keun;Song, Seung-Ho;Kim, Jin Young
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.134-142
    • /
    • 2019
  • As the development of internet of energy (IoE) technologies and spread of various electronic devices have diversified patterns of energy consumption, the reliability of demand prediction has decreased, causing problems in optimization of power generation and stabilization of power supply. In this study, we propose a deep learning method, 1-Dimention-Convolution and Bidirectional Long Short-Term Memory (1D-ConvBLSTM), that combines a convolution neural network (CNN) and a Bidirectional Long Short-Term Memory(BLSTM) for highly reliable demand forecasting by effectively extracting the energy consumption pattern. In experimental results, the demand is predicted with the proposed deep learning method for various number of learning iterations and feature maps, and it is verified that the test data is predicted with a small number of iterations.

Prediction of the DO concentration using the machine learning algorithm: case study in Oncheoncheon, Republic of Korea

  • Lim, Heesung;An, Hyunuk;Choi, Eunhyuk;Kim, Yeonsu
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1029-1037
    • /
    • 2020
  • The machine learning algorithm has been widely used in water-related fields such as water resources, water management, hydrology, atmospheric science, water quality, water level prediction, weather forecasting, water discharge prediction, water quality forecasting, etc. However, water quality prediction studies based on the machine learning algorithm are limited compared to other water-related applications because of the limited water quality data. Most of the previous water quality prediction studies have predicted monthly water quality, which is useful information but not enough from a practical aspect. In this study, we predicted the dissolved oxygen (DO) using recurrent neural network with long short-term memory model recurrent neural network long-short term memory (RNN-LSTM) algorithms with hourly- and daily-datasets. Bugok Bridge in Oncheoncheon, located in Busan, where the data was collected in real time, was selected as the target for the DO prediction. The 10-month (temperature, wind speed, and relative humidity) data were used as time prediction inputs, and the 5-year (temperature, wind speed, relative humidity, and rainfall) data were used as the daily forecast inputs. Missing data were filled by linear interpolation. The prediction model was coded based on TensorFlow, an open-source library developed by Google. The performance of the RNN-LSTM algorithm for the hourly- or daily-based water quality prediction was tested and analyzed. Research results showed that the hourly data for the water quality is useful for machine learning, and the RNN-LSTM algorithm has potential to be used for hourly- or daily-based water quality forecasting.

Forecasting Fish Import Using Deep Learning: A Comprehensive Analysis of Two Different Fish Varieties in South Korea

  • Abhishek Chaudhary;Sunoh Choi
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.134-144
    • /
    • 2023
  • Nowadays, Deep Learning (DL) technology is being used in several government departments. South Korea imports a lot of seafood. If the demand for fishery products is not accurately predicted, then there will be a shortage of fishery products and the price of the fishery product may rise sharply. So, South Korea's Ministry of Ocean and Fisheries is attempting to accurately predict seafood imports using deep learning. This paper introduces the solution for the fish import prediction in South Korea using the Long Short-Term Memory (LSTM) method. It was found that there was a huge gap between the sum of consumption and export against the sum of production especially in the case of two species that are Hairtail and Pollock. An import prediction is suggested in this research to fill the gap with some advanced Deep Learning methods. This research focuses on import prediction using Machine Learning (ML) and Deep Learning methods to predict the import amount more precisely. For the prediction, two Deep Learning methods were chosen which are Artificial Neural Network (ANN) and Long Short-Term Memory (LSTM). Moreover, the Machine Learning method was also selected for the comparison between the DL and ML. Root Mean Square Error (RMSE) was selected for the error measurement which shows the difference between the predicted and actual values. The results obtained were compared with the average RMSE scores and in terms of percentage. It was found that the LSTM has the lowest RMSE score which showed the prediction with higher accuracy. Meanwhile, ML's RMSE score was higher which shows lower accuracy in prediction. Moreover, Google Trend Search data was used as a new feature to find its impact on prediction outcomes. It was found that it had a positive impact on results as the RMSE values were lowered, increasing the accuracy of the prediction.

Short-term Peak Power Demand Forecasting using Model in Consideration of Weather Variable (기상 변수를 고려한 모델에 의한 단기 최대전력수요예측)

  • 고희석;이충식;최종규;지봉호
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.3
    • /
    • pp.73-78
    • /
    • 2001
  • BP neural network model and multiple-regression model were composed for forecasting the special-days load. Special-days load was forecasted using that neural network model made use of pattern conversion ratio and multiple-regression made use of weekday-change ratio. This methods identified the suitable as that special-days load of short and long term was forecasted with the weekly average percentage error of 1∼2[%] in the weekly peak load forecasting model using pattern conversion ratio. But this methods were hard with special-days load forecasting of summertime. therefore it was forecasted with the multiple-regression models. This models were used to the weekday-change ratio, and the temperature-humidity and discomfort-index as explanatory variable. This methods identified the suitable as that compared forecasting result of weekday load with forecasting result of special-days load because months average percentage error was alike. And, the fit of the presented forecast models using statistical tests had been proved. Big difficult problem of peak load forecasting had been solved that because identified the fit of the methods of special-days load forecasting in the paper presented.

  • PDF

A study on short-term wind power forecasting using time series models (시계열 모형을 이용한 단기 풍력발전 예측 연구)

  • Park, Soo-Hyun;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1373-1383
    • /
    • 2016
  • The wind energy industry and wind power generation have increased; consequently, the stable supply of the wind power has become an important issue. It is important to accurately predict the wind power with short-term basis in order to make a reliable planning for the power supply and demand of wind power. In this paper, we first analyzed the speed, power and the directions of the wind. The neural network and the time series models (ARMA, ARMAX, ARMA-GARCH, Holt Winters) for wind power generation forecasting were compared based on mean absolute error (MAE). For one to three hour-ahead forecast, ARMA-GARCH model was outperformed, and the neural network method showed a better performance in the six hour-ahead forecast.

Predicting the number of disease occurrence using recurrent neural network (순환신경망을 이용한 질병발생건수 예측)

  • Lee, Seunghyeon;Yeo, In-Kwon
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.5
    • /
    • pp.627-637
    • /
    • 2020
  • In this paper, the 1.24 million elderly patient medical data (HIRA-APS-2014-0053) provided by the Health Insurance Review and Assessment Service and weather data are analyzed with generalized estimating equation (GEE) model and long short term memory (LSTM) based recurrent neural network (RNN) model to predict the number of disease occurrence. To this end, we estimate the patient's residence as the area of the served medical institution, and the local weather data and medical data were merged. The status of disease occurrence is divided into three categories(occurrence of disease of interest, occurrence of other disease, no occurrence) during a week. The probabilities of categories are estimated by the GEE model and the RNN model. The number of cases of categories are predicted by adding the probabilities of categories. The comparison result shows that predictions of RNN model are more accurate than that of GEE model.