• Title/Summary/Keyword: short term neural network

검색결과 394건 처리시간 0.027초

신경망을 이용한 이동 로봇의 실시간 고속 정밀제어 (High Speed Precision Control of Mobile Robot using Neural Network in Real Time)

  • 주진화;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제5권1호
    • /
    • pp.95-104
    • /
    • 1999
  • In this paper we propose a fast and precise control algorithm for a mobile robot, which aims at the self-tuning control applying two multi-layered neural networks to the structure of computed torque method. Through this algorithm, the nonlinear terms of external disturbance caused by variable task environments and dynamic model errors are estimated and compensated in real time by a long term neural network which has long learning period to extract the non-linearity globally. A short term neural network which has short teaming period is also used for determining optimal gains of PID compensator in order to come over the high frequency disturbance which is not known a priori, as well as to maintain the stability. To justify the global effectiveness of this algorithm where each of the long term and short term neural networks has its own functions, simulations are peformed. This algorithm can also be utilized to come over the serious shortcoming of neural networks, i.e., inefficiency in real time.

  • PDF

Comparative Analysis of PM10 Prediction Performance between Neural Network Models

  • Jung, Yong-Jin;Oh, Chang-Heon
    • Journal of information and communication convergence engineering
    • /
    • 제19권4호
    • /
    • pp.241-247
    • /
    • 2021
  • Particulate matter has emerged as a serious global problem, necessitating highly reliable information on the matter. Therefore, various algorithms have been used in studies to predict particulate matter. In this study, we compared the prediction performance of neural network models that have been actively studied for particulate matter prediction. Among the neural network algorithms, a deep neural network (DNN), a recurrent neural network, and long short-term memory were used to design the optimal prediction model using a hyper-parameter search. In the comparative analysis of the prediction performance of each model, the DNN model showed a lower root mean square error (RMSE) than the other algorithms in the performance comparison using the RMSE and the level of accuracy as metrics for evaluation. The stability of the recurrent neural network was slightly lower than that of the other algorithms, although the accuracy was higher.

A New Approach to Short-term Price Forecast Strategy with an Artificial Neural Network Approach: Application to the Nord Pool

  • Kim, Mun-Kyeom
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1480-1491
    • /
    • 2015
  • In new deregulated electricity market, short-term price forecasting is key information for all market players. A better forecast of market-clearing price (MCP) helps market participants to strategically set up their bidding strategies for energy markets in the short-term. This paper presents a new prediction strategy to improve the need for more accurate short-term price forecasting tool at spot market using an artificial neural networks (ANNs). To build the forecasting ANN model, a three-layered feedforward neural network trained by the improved Levenberg-marquardt (LM) algorithm is used to forecast the locational marginal prices (LMPs). To accurately predict LMPs, actual power generation and load are considered as the input sets, and then the difference is used to predict price differences in the spot market. The proposed ANN model generalizes the relationship between the LMP in each area and the unconstrained MCP during the same period of time. The LMP calculation is iterated so that the capacity between the areas is maximized and the mechanism itself helps to relieve grid congestion. The addition of flow between the areas gives the LMPs a new equilibrium point, which is balanced when taking the transfer capacity into account, LMP forecasting is then possible. The proposed forecasting strategy is tested on the spot market of the Nord Pool. The validity, the efficiency, and effectiveness of the proposed approach are shown by comparing with time-series models

특수일 전력수요예측을 위한 신경회로망 시스템의 개발 (Development of Neural Network System for Short-Term Load Forecasting)

  • 김광호;윤형선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.850-853
    • /
    • 1998
  • This paper proposes a new short-term load forecasting method for special day, such as Public holidays, consecutive holidays, and days before and after holidays. when the load curves are quite different from those of normal weekdays. In this paper, two Artificial Neural Network(ANN) systems are applied to short-term load forecasting for spacial days in anomalous load conditions.

  • PDF

A Novel Second Order Radial Basis Function Neural Network Technique for Enhanced Load Forecasting of Photovoltaic Power Systems

  • Farhat, Arwa Ben;Chandel, Shyam.Singh;Woo, Wai Lok;Adnene, Cherif
    • International Journal of Computer Science & Network Security
    • /
    • 제21권2호
    • /
    • pp.77-87
    • /
    • 2021
  • In this study, a novel improved second order Radial Basis Function Neural Network based method with excellent scheduling capabilities is used for the dynamic prediction of short and long-term energy required applications. The effectiveness and the reliability of the algorithm are evaluated using training operations with New England-ISO database. The dynamic prediction algorithm is implemented in Matlab and the computation of mean absolute error and mean absolute percent error, and training time for the forecasted load, are determined. The results show the impact of temperature and other input parameters on the accuracy of solar Photovoltaic load forecasting. The mean absolute percent error is found to be between 1% to 3% and the training time is evaluated from 3s to 10s. The results are also compared with the previous studies, which show that this new method predicts short and long-term load better than sigmoidal neural network and bagged regression trees. The forecasted energy is found to be the nearest to the correct values as given by England ISO database, which shows that the method can be used reliably for short and long-term load forecasting of any electrical system.

NARX 신경회로망을 이용한 부하추종운전시의 울진 3호기 원자로 모델링 (Nuclear Reactor Modeling in Load Following Operations for UCN 3 with NARX Neural Network -)

  • 이상경;이은철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.21-23
    • /
    • 2005
  • NARX(Nonlinear AutoRegressive with eXogenous input) neural network was used for prediction of nuclear reactor behavior which was influenced by control rods in short-term period and also by xenon and boron in long-term period in load following operations. The developed model was designed to predict reactor power, xenon worth and axial offset with different burnup rates when control rod and boron were adjusted in load following operations. Data of UCN 3 were collected by ONED94 code. The test results presented exhibit the capability of the NARX neural network model to capture the long term and short term dynamics of the reactor core and seems to be utilized as a handy tool for the use of a plant simulation.

  • PDF

신경회로망을 이용한 부하추종운전중의 차세대 원자로 모델링 (Nuclear Reactor Modeling in Load Following Operations for Korea Next Generation PWR with Neural Network)

  • 이상경;장진욱;성승환;이은철
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권9호
    • /
    • pp.567-569
    • /
    • 2005
  • NARX(Nonlinear AutoRegressive with eXogenous input) neural network was used for prediction of nuclear reactor behavior which was influenced by control rods in short-term period and also by the concentration of xenon and boron in long-term period in load following operations. The developed model was designed to predict reactor power, xenon worth and axial offset with different burnup states when control rods and boron were adjusted in load following operations. Data of the Korea Next Generation PWR were collected by ONED94 code. The test results presented exhibit the capability of the NARX neural network model to capture the long term and short term dynamics of the reactor core and the developed model seems to be utilized as a handy tool for the use of a plant simulation.

코호넨 신경회로망과 웨이브릿 변환을 이용한 단기부하예측 (Short-term load forecasting using Kohonen neural network and wavelet transform)

  • 김창일;김봉태;김우현;유인근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 A
    • /
    • pp.239-241
    • /
    • 1999
  • This paper proposes a novel wavelet transform and Kohonen neural network based technique for short-time load forecasting of power systems. Firstly. Kohonen Self-organizing map(KSOM) is applied to classify the loads and then the Daubechies D2, D4 and D10 wavelet transforms are adopted in order to forecast the short-term loads. The wavelet coefficients associated with certain frequency and time localisation are adjusted using the conventional multiple regression method and then reconstructed in order to forecast the final loads through a four-scale synthesis technique. The outcome of the study clearly indicates that the proposed composite model of Kohonen neural network and wavelet transform approach can be used as an attractive and effective means for short-term load forecasting.

  • PDF

The roles of differencing and dimension reduction in machine learning forecasting of employment level using the FRED big data

  • Choi, Ji-Eun;Shin, Dong Wan
    • Communications for Statistical Applications and Methods
    • /
    • 제26권5호
    • /
    • pp.497-506
    • /
    • 2019
  • Forecasting the U.S. employment level is made using machine learning methods of the artificial neural network: deep neural network, long short term memory (LSTM), gated recurrent unit (GRU). We consider the big data of the federal reserve economic data among which 105 important macroeconomic variables chosen by McCracken and Ng (Journal of Business and Economic Statistics, 34, 574-589, 2016) are considered as predictors. We investigate the influence of the two statistical issues of the dimension reduction and time series differencing on the machine learning forecast. An out-of-sample forecast comparison shows that (LSTM, GRU) with differencing performs better than the autoregressive model and the dimension reduction improves long-term forecasts and some short-term forecasts.

특수일 전력수요예측을 위한 신경회로망 시스템의 개발 (Development of Neural Network System for Short-Term Load Forecasting for a Special Day)

  • 김광호;윤형선;이철희
    • 산업기술연구
    • /
    • 제18권
    • /
    • pp.379-384
    • /
    • 1998
  • Conventional short-term load forecasting techniques have limitation in their use on holidays due to dissimilar load behaviors of holidays and insufficiency of pattern data. Thus, a new short-term load forecasting method for special days in anomalous load conditions is proposed in this paper. The proposed method uses two Artificial Neural Networks(ANN); one is for the estimation of load curve, and the other is for the estimation of minimum and maximum value of load. The forecasting procedure is as follows. First, the normalized load curve is estimated by ANN. At next step, minimum and maximum values of load in a special day are estimated by another ANN. Finally, the estimate of load in a whole special day is obtained by combining these two outputs of ANNs. The proposed method shows a good performance, and it may be effectively applied to the practical situations.

  • PDF