• Title/Summary/Keyword: short span bridge

Search Result 74, Processing Time 0.023 seconds

Evaluation of multi-lane transverse reduction factor under random vehicle load

  • Yang, Xiaoyan;Gong, Jinxin;Xu, Bohan;Zhu, Jichao
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.725-736
    • /
    • 2017
  • This paper presents the two-, three-, and four-lane transverse reduction factor based on FEA method, probability theory, and the recently actual traffic flow data. A total of 72 composite girder bridges with various spans, number of lanes, loading mode, and bridge type are analyzed with time-varying static load FEA method by ANSYS, and the probability models of vehicle load effects at arbitrary-time point are developed. Based on these probability models, in accordance to the principle of the same exceeding probability, the multi-lane transverse reduction factor of these composite girder bridges and the relationship between the multi-lane transverse reduction factor and the span of bridge are determined. Finally, the multi-lane transverse reduction factor obtained is compared with those from AASHTO LRFD, BS5400, JTG D60 or Eurocode. The results show that the vehicle load effect at arbitrary-time point follows lognormal distribution. The two-, three-, and four-lane transverse reduction factors calculated by using FEA method and probability respectively range between 0.781 and 1.027, 0.616 and 0.795, 0.468 and 0.645. Furthermore, a correlation between the FEA and AASHTO LRFD, BS5400, JTG D60 or Eurocode transverse reduction factors is made for composite girder bridges. For the two-, three-, and four-lane bridge cases, the Eurocode code underestimated the FEA transverse reduction factors by 27%, 25% and 13%, respectively. This underestimation is more pronounced in short-span bridges. The AASHTO LRFD, BS5400 and JTG D60 codes overestimated the FEA transverse reduction factors. The FEA results highlight the importance of considering span length in determining the multi-lane transverse reduction factors when designing two-lane or more composite girder bridges. This paper will assist bridge engineers in quantifying the adjustment factors used in analyzing and designing multi-lane composite girder bridges.

Resistance Factor Calculation of Driven Piles of Long Span Bridges (장대교량 타입말뚝에 대한 저항계수 산정)

  • Kim, Dong-Wook;Park, Jae-Hyun;Lee, Joon-Yong;Kwak, Ki-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.4
    • /
    • pp.57-65
    • /
    • 2013
  • Assessment of uncertainties of loads and resistances is prerequisite for the development of load and resistance factor design (LRFD). Many previous studies related to resistance factor calculations of piles were conducted for short or medium span bridges (span lengths less than 200m) reflecting the live load uncertainty for ordinary span bridges. In this study, by using a revised live load model and its uncertainty for long span bridges (span lengths longer than 200m and shorter than 1500m), resistance factors are recalibrated. For the estimation of nominal pile capacity (both base and shaft capacities), the Imperial College Pile (ICP) design method is used. For clayey and sandy foundation, uncertainty of resistance is assessed based on the ICP database. As long span bridges are typically considered as more important structures than short or medium span bridges, higher target reliability indices are assigned in the reliability analysis. Finally, resistance factors are calculated and proposed for the use of LRFD of driven piles for ordinary span and long span bridges.

Highway bridge live loading assessment and load carrying capacity estimation using a health monitoring system

  • Moyo, Pilate;Brownjohn, James Mark William;Omenzetter, Piotr
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.609-626
    • /
    • 2004
  • The Land Transport Authority of Singapore has a continuing program of highway bridge upgrading, to refurbish and strengthen bridges to allow for increasing vehicle traffic and increasing axle loads. One subject of this program has been a short span bridge taking a busy highway across a coastal inlet near a major port facility. Experiment-based structural assessments of the bridge were conducted before and after upgrading works including strengthening. Each assessment exercise comprised two separate components; a strain and acceleration monitoring exercise lasting approximately one month, and a full-scale dynamic test carried out in a single day. This paper reports the application of extreme value statistics to estimate bridge live loads using strain measurements.

Behavior of Jointless Bridge of Steel Box Girder Type Due to Temperature Change (온도변화에 따른 무신축이음 강상자형 교량의 거동 분석)

  • 조남훈;이성우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.95-102
    • /
    • 1997
  • Jointless bridge is a new construction method applicable to bridge of short length. In the jointless bridge expansion of superstructure due to thermal effect was absorbed in the flexible pile-type abutment in stead of expansion joint in the conventional bridges. By removing expansion joint, it retards deterioration and extends life time of bridge. In this paper, jointless bridge of steel box girder type was studied through finite element analysis. Stress variations of superstructure and pile due to thermal effect was studied for the two span continuous integral bridge of 80m length and the results of analysis was presented.

  • PDF

Load Bearing Capacity Evaluation of Continuous IPC Girder Bridge. (IPC 거더 연속교의 실교량 내하력 평가 연구)

  • Han, Man-Yop;Hwang, Eu-Seung;Jin, Kyung-Seok;Kang, Sang-Hoon;Shin, Jae-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.475-478
    • /
    • 2005
  • This study was performed to evaluate about load bearing capacity of continuos IPC Girder Bridge under and after Construction. This is Ichi-1 Bridge that is 2-40m span continuous bridge on a extension road through the Ichun and the Naesa. The result of static loading test to use a 25ton truck after construction, deflection ratio is 0.64 that is $35\%$ and average of response ratio is 0.48$\~$0.89 that is less than theoretical value. The result of dynamic loading test, the number of proper vibrations is 3.06Hz that is like theoretical value 3.61Hz, the modulus of impact is 0.235 that is bigger than specification 0.19. the load bearing capacity is minimum DB-40 that is so big value. In the result, continuos IPC Girder Bridge is safe in short period. we will evaluate long period behavior of continuos IPC Girder Bridge.

  • PDF

Study on Application of Wave Travelling Effect and Local Site Effect to Design Standard for Analysing Seismic Behavior of Long-Span Cable-Stayed Bridge (장대사장교의 지진거동 분석시 지반특성 및 파동전달효과를 고려한 설계기준 적용에 대한 고찰)

  • Park, Youn-Soo;Song, Young-Bong;Hyun, Ki-Hwyun;Lee, Soon Nam;Yang, Won Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.167-174
    • /
    • 2008
  • Number of long-span bridge construction has been increased recently so that seismic consideration of design has become significant. To adapt such significance to design, seismic design in the newly revised 'Cable Steel Bridge Design Handbook' specifies some of wave travelling effect and local site effect. In this study, a cable-stayed bridge with main span of 500m is analysed having variables of uniform excitation, wave travelling effect, and wave travelling effect plus local site effect. Result shows that wave travelling effect in cable-stayed bridge affects considerably to its seismic response under weak soil condition even though the span length is relatively short. What's more, regardless of soil type, the seismic response has become higher for analysis with wave travelling effect and local site effect than with wave travelling effect only. Consequently, in seismic response analysis of long-span bridge, consideration should be given to application of wave travelling effect and local site effect.

Deep learning-based sensor fault detection using S-Long Short Term Memory Networks

  • Li, Lili;Liu, Gang;Zhang, Liangliang;Li, Qing
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.51-65
    • /
    • 2018
  • A number of sensing techniques have been implemented for detecting defects in civil infrastructures instead of onsite human inspections in structural health monitoring. However, the issue of faults in sensors has not received much attention. This issue may lead to incorrect interpretation of data and false alarms. To overcome these challenges, this article presents a deep learning-based method with a new architecture of Stateful Long Short Term Memory Neural Networks (S-LSTM NN) for detecting sensor fault without going into details of the fault features. As LSTMs are capable of learning data features automatically, and the proposed method works without an accurate mathematical model. The detection of four types of sensor faults are studied in this paper. Non-stationary acceleration responses of a three-span continuous bridge when under operational conditions are studied. A deep network model is applied to the measured bridge data with estimation to detect the sensor fault. Another set of sensor output data is used to supervise the network parameters and backpropagation algorithm to fine tune the parameters to establish a deep self-coding network model. The response residuals between the true value and the predicted value of the deep S-LSTM network was statistically analyzed to determine the fault threshold of sensor. Experimental study with a cable-stayed bridge further indicated that the proposed method is robust in the detection of the sensor fault.

Evaluation of Deterioration on Steel Bridges Based on Bridge Condition Ratings

  • Park, Chan-Hee
    • Corrosion Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.166-171
    • /
    • 2004
  • Recent developments in Bridge Management Systems (BMS) and in Life-Cycle Cost (LCC) of bridges, have raised the need for evaluation procedure of future condition (Deterioration) of a bridge. Predicting future deterioration is not an easy task due to limited past data to extrapolate from and also due to difficulty in measuring actual deterioration such as section loss of steel on an actual steel bridge. Also, increase in live load and reduction of resistance are random variables, thus a probabilistic approach should be adopted for determining the future deterioration. Due to difficulties in evaluation of future deterioration on steel bridges, accepting uncertainties within a reasonable error, a deterministic procedure using bridge condition rating can be a useful tool for projection of future condition of bridges to identify repair and maintenance needs. The object of this paper is to determine applicability of evaluating deterioration of steel bridge components based on Bridge condition ratings. Bridge condition ratings of bridge components show wide variation for bridges of same age and does not directly correlate well with the age of the bridge and/or deterioration of the bridge. High uncertainty can be reduced by breaking down the rating and by sensitivity analysis. From refined condition rating data, generalized deterioration profile of structures based on age can be derived. Examples are shown for sample bridges in USA. Approximately, 3,000 short to medium span steel bridges were listed in the inventory database. Results show wide variation of rating factors but by subdividing the Bridge condition ratings for various categories general deterioration profiles of steel bridges can be determined.

Evaluation on Static Behavior of Long Span Prestressed Concrete Deck (장지간 프리스트레스트 콘크리트 바닥판의 정적 거동 평가)

  • Joo, Sanghoon;Chung, Chulhun;Lee, Hanjoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.969-977
    • /
    • 2016
  • In this paper, the static load test of long span PSC deck used in the twin steel plate girder bridge was conducted. To evaluate the structural behavior of long span deck, longitudinally sufficient length of deck is needed, but it is difficult to test the full-scale long span deck due to limit of transportation, setting and laboratory space. Therefore, this study proposed a method to apply longitudinal stiffness of the full-scale deck to the test specimen of longitudinally short length, and it was reinforced with the steel beam. The failure behavior and structural performance of the long span deck were evaluated by the proposed test specimen deck.

Static Behavior of Prestressed Steel-Concrete Composite Girder (프리스트레스트 강합성 거더의 정적거동 평가)

  • Lee Pil-Goo;Kim Sung-Il;An Hae-Young;Moon Jong--Hoon
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.240-245
    • /
    • 2005
  • There has been a strong demand on more economic and lower depth girder bridges for short and medium span range, PRECOM, which is a new type steel-concrete composite girder, has been developed to realize a more economic bridge system with a lower depth girder. In the PRECOM girder bridge, a steel plate girder is simply supported and then concrete form is hung to girder. Thus, the self-weight of the concrete is loaded to the steel girder. To increase the resistance of concrete in the lower casing against tensile stress, compressive force is introduced by prestressed tendon To evaluate the manufacturability and performances of the completed bridge, four 15-m girders and a bridge specimen with two 20m girders wvere constructed. The camber during the construction and introduction of an appropriate compressive force was evaluated. Dynamic data were obtained through the modal testing of the completed girders. Static loading test was also conducted to examine cracks and evaluate the decrease in stiffness and failure behavior under extreme conditions.

  • PDF