• Title/Summary/Keyword: short cracks

Search Result 115, Processing Time 0.021 seconds

Detection of Fatigue Damage in Aluminum Thin Plates with Rivet Holes by Acoustic Emission (리벳 구멍을 가진 알루미늄 박판구조의 피로손상 탐지를 위한 음향방출의 활용)

  • Kim, Jung-Chan;Kim, Sung-Jin;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.3
    • /
    • pp.246-253
    • /
    • 2003
  • The initiation and growth of short fatigue cracks in the simulated aircraft structure with a series of rivet holes was detected by acoustic emission (AE). The location and the size of short tracks were determined by AE source location techniques and the measurement with traveling microscope. AE events increased intermittently with the initiation and growth of short cracks to form a stepwise increment curve of cumulative AE events. For the precise determination of AE source locations, a region-of-interest (ROI) was set around the rivet holes based on the plastic zone size in fracture mechanics. Since the signal-to-noise ratio (SNR) was very low at this early stage of fatigue cracks, the accuracy of source location was also enhanced by the wavelet transform do-noising. In practice, the majority of AE signals detected within the ROI appeared to be noise from various origins. The results showed that the effort of structural geometry and SNR should be closely taken into consideration for the accurate evaluation of fatigue damage in the structure.

Long-Term Experiment of Chloride Penetration in Concrete through Cracks (콘크리트의 균열부를 통한 염소이온 침투의 장기 실험연구)

  • Yoon, In-Seok;Sung, Jae-Duck
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.809-812
    • /
    • 2008
  • Over the past few decades, considerable numbers of studies on the durability of concrete have been carried out extensively. The majority of these researches have been performed on sound uncracked concrete, although most of in-situ concrete structures have more or less micro-cracks. It is only recent approach that the attention has shifted towards the influence of cracks and crack width on the penetration of chloride into concrete. The penetration of chlorides into concrete through the cracks can make a significant harmful effect on reinforcement corrosion. Author of this study examined the effect of cracks on chloride penetration by short tem experiment. However, it is necessary to accomplish the effect by long term experiment to get reliable goal. In this study, the long term experiment was carried out and the experimental result was compared with short term experiment. Crack tends to decrease with elapsed time because of self-healing. Especially this trend was obvious in concrete sample with wide crack with.

  • PDF

Production of SCC Flaws and Evaluation Leak Behavior of Steam Generator Tubes (누설 및 파열실험용 SCC 결함 전열관 제작 및 누설거동 평가)

  • Hwang, Seong-Sik;Jung, Man-Kyo;Park, Jang-Yul;Kim, Hong-Pyo
    • Corrosion Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.188-192
    • /
    • 2009
  • A forced outage due to a steam generator tube leak in a Korean nuclear power plant was reported.1) Primary water stress corrosion cracking has occurred in many tubes in the plant, and they were repaired using sleeves or plugs. In order to develop proper repair criteria, it is necessary to understand the leak behavior of the tubes containing stress corrosion cracks. Stress corrosion cracks were developed in 0.1 M sodium tetrathionate solution at room temperature. Steam generator(SG) tubes with short cracks were successfully fabricated with a restricted solution contact method. The leak rates of the degraded tubes were measured at room temperature. Some tubes with 100 % through wall cracks showed an increase of leak rate with time at a constant pressure.

Shear performance of an innovative UHPFRC deck of composite bridge with coarse aggregate

  • Qi, Jianan;Wanga, Jingquan;Feng, Yu
    • Advances in concrete construction
    • /
    • v.7 no.4
    • /
    • pp.219-229
    • /
    • 2019
  • This paper presents an experimental study on the structural performance of an innovative ultra-high performance fiber reinforced concrete (UHPFRC) deck with coarse aggregate of composite bridge under shear force. Test parameters included curing method and shear span-to-height ratio. Test results indicated that more short fine cracks developed beside the existing cracks due to the randomly dispersed fibers, resulting in re-distributing and homogenizing of the concrete stress beside cracks and allowing for the occurrence of more cracks with small spacing compared to normal strength concrete beams. Curing methods, incorporating steam curing and natural curing, did not have obvious effect on the nominal bending cracking strength and the ultimate strength of the test specimens. Shear reinforcement need not be provided for UHPFRC decks with a fiber volume fraction of 2%. UHPFRC decks showed superior load resistance ability after the appearance of cracks and excellent post-cracking deformability. Lastly, the current shear provisions were evaluated by the test results.

DETECTION OF ODSCC IN SG TUBES DEPENDING ON THE SIZE OF THE CRACK AND ON THE PRESENCE OF SLUDGE DEPOSITS

  • Chung, Hansub;Kim, Hong-Deok;Kang, Yong-Seok;Lee, Jae-Gon;Nam, Minwoo
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.869-874
    • /
    • 2014
  • It was discovered in a Korean PWR that an extensive number of very short and shallow cracks in the SG tubes were undetectable by eddy current in-service-inspection because of the masking effect of sludge deposits. Axial stress corrosion cracks at the outside diameter of the steam generator tubes near the line contacts with the tube support plates are the major concern among the six identical Korean nuclear power plants having CE-type steam generators with Alloy 600 high temperature mill annealed tubes, HU3&4 and HB3~6. The tubes in HB3&4 have a less susceptible microstructure so that the onset of ODSCC was substantially delayed compared to HU3&4 whose tubes are most susceptible to ODSCC among the six units. The numbers of cracks detected by the eddy current inspection jumped drastically after the steam generators of HB4 were chemically cleaned. The purpose of the chemical cleaning was to mitigate stress corrosion cracking by removing the heavy sludge deposit, since a corrosive environment is formed in the occluded region under the sludge deposit. SGCC also enhances the detection capability of the eddy current inspection at the same time. Measurement of the size of each crack using the motorized rotating pancake coil probe indicated that the cracks in HB4 were shorter and substantially shallower than the cracks in HU3&4. It is believed that the cracks were shorter and shallower because the microstructure of the tubes in HB4 is less susceptible to ODSCC. It was readily understood from the size distribution of the cracks and the quantitative information available on the probability of detection that most cracks in HB4 had been undetected until the steam generators were chemically cleaned.

Detection and non-propagating cracks of small fatigue crack (미소피로균열의 검출과 정류균열)

  • 이종형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.603-609
    • /
    • 1990
  • Detection and non-propagating cracks of small fatigue crack for smooth and pre-cracked specimens were examined in a carbon steel. The fretting oxide induced crack closure triggered by the roughness induced crack closure has an important role in determing the length. The fatigue limit for the with no cracks or with a short pre-crack is lower at R=-1 than that at R=0. A non-propagating crack are quite different between points near the specimen's surface and those of deepest penetration.

High-Temperature Drying of Bamboo Tubes Pretreated with Polyethylen Glycol Solution

  • Kang, Chun-Won;Chung, Woo-Yang;Han, Jae-Ok;Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.139-146
    • /
    • 2017
  • This study was conducted to develop a new drying technology in order to quickly and massively dry bamboo tubes without crack and check. The bamboo tubes with the diameter of 45 mm - 68 mm had been impregnated in the solution of PEG-1000, and then were dried under room temperature and high temperature, respectively. The cracks occurred on all control specimens while no cracks were found on PEG treated specimens during drying at room temperature due to effect of PEG restraining the circumferential shrinkage of bamboo tube. But the drying period of this method was too long (200 days) compared to 10 hours of kiln drying. During fast high temperature drying, cracks occurred on all control specimens, but no cracks were found on PEG treated specimens, which could be accounted for more solidified PEG due to higher drying temperature and faster drying rate, and the tension set formed on the surface of bamboo tube in the early stage of drying owning to high drying temperature and low relative humidity. Thus, it is advised that PEG treated bamboo tube should be fast dried at high temperature in order to not only prevent crack or check in short drying period but also increase the dimensional stability of the products made of bamboo tubes.

A study on crack opening behavior of small fatigue crack in Al 2024-T3 material using computerized interferometric strain/displacement gage (계장화 미소변위 측정기를 이용한 Al 2024-T3 소재의 미소피로 균열의 열림특성연구)

  • 이주진;남승훈;허용학;임대순;윤성기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1576-1582
    • /
    • 1990
  • To examine small fatigue crack behavior, the crack opening displacement (COD) was measured for surface cracks in the range of few tens to hundreds .mu.m using the computerized Interferometric Strain/Displacement Gage (ISDG) which could measure the relative displacement with a resolution of 0.02 .mu.m. The load-COD record is stored and analyzed after the test to determined the opening load. Single-edge notched specimens, 2.3mm thick, of Al 2024-T3 were precracked at load ratios of 0.0, -1.0 and -2.0 to make small fatigue cracks. The opening loads were measured these small cracks and compared with those of long cracks. The opening load ratios for the short cracks are about 10% smaller than those for long cracks at positive R-ratios, but are about 100% smaller at negative R-ratios.

Bond Characteristics of High-Strength Concrete (고장도 콘크리트의 부착특성에 관한 연구)

  • Lee, Joon-Gu;Mun, In;Yum, Hwan-Seok;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.499-506
    • /
    • 2001
  • Eight direct tension tests were conducted to study the bond characteristics and crack behavior in high-strength concrete axial members. The main variable was the concrete strength up to 61-63 MPa. The specimens consisted of two different types of the short specimens modeled the part between transverse cracks and the long specimens having numerous transverse cracks. The results obtained show that the bond strength increases in proportion to compressive strength. Thereby, in high-strength concrete the length of stress-disturbed region is shortened and the space of adjacent transverse cracks become smaller. Although the concrete strength varies from 25 MPa to 61 MPa, the split cracking loads remain constant, while transverse cracking loads vary as variation of concrete tensile strength. Accordingly, the current code provisions for development length may need reconsideration in high-strength concrete members, and it is recommended that either thicker cover or transverse reinforcement should be additionally provided for high-strength concrete members.

A Study on Corrosion Fatigue Crack Growth Behavior in Al-Alloy 7075-T651 (I) (Al-Alloy 7075-T651의 부식피로균열 성장거동에 관한 연구(I))

  • 김봉철;한지원;우흥식
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.113-120
    • /
    • 1998
  • Fatigue crack growth rates(i.e. crack initiation and crack growth of short and long crack) are investigated using commercial plates of high strength Al alloy 7075-T651 for the transverse-longitudinal(T-L) direction in air, water and sea water. Also, the evaluation direct current potential drop(D.C.P.D) method and the fractographical analysis by SEM are carried out. Near threshold region, short crack growth rates were much faster than those of comparable long cracks, and these short crack growth rates actually decrease with increasing crack growth and eventually merge with long crack data. Fatigue crack propagation rates in aggressive media(i.e. sea water) increase noticeably over three times those in air. One of the most significant characters in this phenomenon as a corrosion-fatigue causes an acceleration in crack growth rates. Sea water environment, particularly Cl$^{[-10]}$ solution brings the most detrimental effects to aluminum alloy. The result of fractographical morphology in air, water and sea water by SEM shows obvious dimpled rupture and typical striation in air, but transgranular fracture surface in water and sea water.

  • PDF