• Title/Summary/Keyword: short channel

Search Result 831, Processing Time 0.026 seconds

Device Design Guideline for Nano-scale SOI MOSFETs (나노 스케일 SOI MOSFET를 위한 소자설계 가이드라인)

  • Lee, Jae-Ki;Yu, Chong-Gun;Park, Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.7
    • /
    • pp.1-6
    • /
    • 2002
  • For an optimum device design of nano-scale SOI devices, this paper describes the short channel effects of multi-gate structures SOI MOSFETs such as double gate, triple gate and quadruple gate, as well as a new proposed Pi gate using computer simulation. The simulation has been performed with different channel doping concentrations, channel widths, silicon film thickness, and vertical gate extension depths of Pi gate. From the simulation results, it is found that Pi gate devices have a large margin in determination of doping concentrations, channel widths and film thickness comparing to double and triple gate devices because Pi gate devices offer a better short channel effects.

Relation between Conduction Path and Breakdown Voltages of Double Gate MOSFET (DGMOSFET의 전도중심과 항복전압의 관계)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.917-921
    • /
    • 2013
  • This paper have analyzed the change of breakdown voltage for conduction path of double gate(DG) MOSFET. The low breakdown voltage among the short channel effects of DGMOSFET have become obstacles of device operation. The analytical solution of Poisson's equation have been used to analyze the breakdown voltage, and Gaussian function been used as carrier distribution to analyze closely for experimental results. The change of breakdown voltages for conduction path have been analyzed for device parameters such as channel length, channel thickness, gate oxide thickness and doping concentration. Since this potential model has been verified in the previous papers, we have used this model to analyze the breakdown voltage. Resultly, we know the breakdown voltage is greatly influenced on the change of conduction path for device parameters of DGMOSFET.

Analysis on the Threshold Voltage of Nano-Channel MOSFET (나노채널 MOSFET의 문턱전압분석)

  • 정정수;김재홍;고석웅;이종인;정학기
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.1
    • /
    • pp.109-114
    • /
    • 2002
  • In this paper, we have presented the simulation results ah)ut threshold voltage for Si-based MOSFETs with channel length of nano scale. We simulated the Si-based n channel MOSFETs with gate lengths from 180 to 30 nm in accordance to the constant voltage scaling theory and the lateral scaling. These MOSFETs had the lightly doped drain(LDD) structure, which is used for the reduction of electric field magnitude and short channel effects at the drain region. The stronger electric field at this region is due to scaling down. We investigated and analyzed the threshold voltage of these devices. This analysis will provide insight into some applicable limitations at the ICs and used for basis data at VLSI.

Tunneling Current of Sub-10 nm Asymmetric Double Gate MOSFET for Channel Doping Concentration (10 nm 이하 비대칭 DGMOSFET의 채널도핑농도에 따른 터널링 전류)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1617-1622
    • /
    • 2015
  • This paper analyzes the ratio of tunneling current for channel doping concentration of sub-10 nm asymmetric double gate(DG) MOSFET. The ratio of tunneling current for off current in subthreshold region increases in the region of channel length of 10 nm below. Even though asymmetric DGMOSFET is developed to reduce short channel effects, the increase of tunneling current in sub-10 nm is inevitable. As the ratio of tunneling current in off current according to channel doping concentration is calculated in this study, the influence of tunneling current to occur in short channel is investigated. To obtain off current to consist of thermionic emission and tunneling current, the analytical potential distribution is obtained using Poisson equation and tunneling current using WKB(Wentzel-Kramers-Brillouin). As a result, tunneling current is greatly changed for channel doping concentration in sub-10 nm asymmetric DGMOSFET, specially with parameters of channel length, channel thickness, and top/bottom gate oxide thickness and voltage.

Analysis of Breakdown Voltages of Double Gate MOSFET Using 2D Potential Model (이차원 전위분포모델을 이용한 이중게이트 MOSFET의 항복전압 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1196-1202
    • /
    • 2013
  • This paper have analyzed the change of breakdown voltage for channel doping concentration and device parameters of double gate(DG) MOSFET using two dimensional potential model. The low breakdown voltage becomes the obstacle of power device operation, and breakdown voltage decreases seriously by the short channel effects derived from scaled down device in the case of DGMOSFET. The two dimensional analytical potential distribution derived from Poisson's equation have been used to analyze the breakdown voltage for device parameters such as channel length, channel thickness, gate oxide thickness and channel doping concentration. Resultly, we could observe the breakdown voltage has greatly influenced on device dimensional parameters as well as channel doping concentration, especially the shape of Gaussian function used as channel doping concentration.

An Analytical Model for the Derivation of the Ⅰ-Ⅴ Characteristics of a Short Channel InAlAs/InGaAs HEMT by Solving Two-Dimensional Poisson's Equation (2차원 Poisson방정식 풀이에 의한 단 채널 InAlAs/InGaAs HEMT의 전류-전압 특성 도출에 관한 해석적 모델)

  • Oh, Young-Hae;Suh, Chung-Ha
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.5
    • /
    • pp.21-28
    • /
    • 2007
  • In this paper, in order to derive the two-dimensional field effect of n-InAlAs/InGaAs HEMTs, we suggested analytical model by solving the two-dimensional Poisson's equation in both InAlAs and InGaAs regions by taking into account the longitudinal field variation, field-dependent mobility, and the continuity condition of the channel current flowing within the quantum well shaped channel. Derived expressions for long and short channel devices would be applicable to the entire operating regions in a unified manner. Simulation results show that the drain saturation current increases and the threshold voltage decreases as drain voltage increases. Compared with the conventional model, the present model may offer more reasonable explanation for the drain-induced threshold voltage roll-off, the Early effect, and the channel length modulation effect. Furthermore, it is expected that the proposed model would provide more reasonable theoretical basis for analyzing various long and short channel InAlAs/InGaAs HEMT devices.

An Analytical Model for the I-V Characteristics of a Short Channel AlGaN/GaN HEMT with Piezoelectric and Spontaneous Polarizations (압전 및 자발 분극을 고려한 단채널 AlGaN/GaN HEMT의 전류-전압 특성에 관한 해석적 모델)

  • Oh Young-Hae;Ji Soon-Koo;Suh Chung-Ha
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.12
    • /
    • pp.103-112
    • /
    • 2005
  • In this paper, in order to derive the current-voltage characteristics of n-AlGaN/GaN HEMTs with the piezoelectric and spontaneous polarizations, we suggested analytical solutions for the two-dimensional Poisson equation in the AlGaN and GaN regions by taking into account the longitudinal field variation, field-dependent mobility, and the continuity condition of the channel current flowing in the quantum well. Obtained expressions for long and short channel devices would be applicable to the entire operating regions in a unified manner. Simulation results show that the drain saturation current increases and the cutoff voltage decreases as drain voltage increases. Compared with the conventional models, the present model seems to provide more reasonable explanation for the drain-induced threshold voltage roll-off and the channel length modulation effect.

Bottom Gate Voltage Dependent Threshold Voltage Roll-off of Asymmetric Double Gate MOSFET (하단게이트 전압에 따른 비대칭 이중게이트 MOSFET의 문턱전압이동 의존성)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1422-1428
    • /
    • 2014
  • This paper has analyzed threshold voltage roll-off for bottom gate voltages of asymmetric double gate(DG) MOSFET. Since the asymmetric DGMOSFET is four terminal device to be able to separately bias for top and bottom gates, the bottom gate voltage influences on threshold voltage. It is, therefore, investigated how the threshold voltage roll-off known as short channel effects is reduced with bottom gate voltage. In the pursuit of this purpose, off-current model is presented in the subthreshold region, and the threshold voltage roll-off is observed for channel length and thickness with a parameter of bottom gate voltage as threshold voltage is defined by top gate voltage that off-currnt is $10^{-7}A/{\mu}m$ per channel width. As a result to observe the threshold voltage roll-off for bottom gate voltage using this model, we know the bottom gate voltage greatly influences on threshold voltage roll-off voltages, especially in the region of short channel length and thickness.

Three-dimensional Modeling of Transient Enhanced Diffusion (과도 증속 확산(TED)의 3차원 모델링)

  • 이제희;원태영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.6
    • /
    • pp.37-45
    • /
    • 1998
  • In this paper, we report the first three-dimensional simulation result of the transient enhanced diffusion(TED) of dopants in the ion-implanted silicon by employing our 3D semiconductor process simulator, INPROS system. In order to simulate three-dimensional TED redistribution of dopants in silicon, the dopant distributions after the ion implantation was calculated by Monte Carlo(MC) method, followed by finite element(FE) numerical solver for thermal annealing. Excellent agreement between the simulated 3D profile and the SIMS data has been obtained for ion-implanted arsenic and phosphorus after annealing the boron marker layer at 75$0^{\circ}C$ for 2 hours. Our three-dimensional TED simulation could successfully explain the reverse short channel effect(RSCE) by taking the 3D point defect distribution into account. A coupled TED simulation and device simulation allows reverse short channel effect on threshold to be accurately predicted.

  • PDF

A Compact Model of Gate-Voltage-Dependent Quantum Effects in Short-Channel Surrounding-Gate Metal-Oxide-Semiconductor Field-Effect Transistors

  • Kim, Ji-Hyun;Sun, Woo-Kyung;Park, Seung-Hye;Lim, Hye-In;Shin, Hyung-Soon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.278-286
    • /
    • 2011
  • In this paper, we present a compact model of gate-voltage-dependent quantum effects in short-channel surrounding-gate (SG) metal-oxide-semiconductor field-effect transistors (MOSFETs). We based the model on a two-dimensional (2-D) analytical solution of Poisson's equation using cylindrical coordinates. We used the model to investigate the electrostatic potential and current sensitivities of various gate lengths ($L_g$) and radii (R). Schr$\ddot{o}$dinger's equation was solved analytically for a one-dimensional (1-D) quantum well to include quantum effects in the model. The model takes into account quantum effects in the inversion region of the SG MOSFET using a triangular well. We show that the new model is in excellent agreement with the device simulation results in all regions of operation.