• Title/Summary/Keyword: short chain fatty acids

Search Result 176, Processing Time 0.032 seconds

In Vitro Evaluation of Probiotic Properties of Two Novel Probiotic Mixtures, Consti-Biome and Sensi-Biome

  • You Jin Jang;Bonggyu Min;Jong Hyun Lim;Byung-Yong Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1149-1161
    • /
    • 2023
  • Changes in the gut microbiome cause recolonization by pathogens and inflammatory responses, leading to the development of intestinal disorders. Probiotics administration has been proposed for many years to reverse the intestinal dysbiosis and to enhance intestinal health. This study aimed to evaluate the inhibitory effects of two newly designed probiotic mixtures, Consti-Biome and Sensi-Biome, on two enteric pathogens Staphylococcus aureus and Escherichia coli that may cause intestinal disorders. Additionally, the study was designed to evaluate whether Consti-Biome and Sensi-Biome could modulate the immune response, produce short-chain fatty acids (SCFAs), and reduce gas production. Consti-Biome and Sensi-Biome showed superior adhesion ratios to HT-29 cells and competitively suppressed pathogen adhesion. Moreover, the probiotic mixtures decreased the levels of pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-6 and IL-1β. Cell-free supernatants (CFSs) were used to investigate the inhibitory effects of metabolites on growth and biofilms of pathogens. Consti-Biome and Sensi-Biome CFSs exhibited antimicrobial and anti-biofilm activity, where microscopic analysis confirmed an increase in the number of dead cells and the structural disruption of pathogens. Gas chromatographic analysis of the CFSs revealed their ability to produce SCFAs, including acetic, propionic, and butyric acid. SCFA secretion by probiotics may demonstrate their potential activities against pathogens and gut inflammation. In terms of intestinal symptoms regarding abdominal bloating and discomfort, Consti-Biome and Sensi-Biome also inhibited gas production. Thus, these two probiotic mixtures have great potential to be developed as dietary supplements to alleviate the intestinal disorders.

The Gut-Heart Axis: Updated Review for The Roles of Microbiome in Cardiovascular Health

  • Thi Van Anh Bui;Hyesoo Hwangbo;Yimin Lai;Seok Beom Hong;Yeon-Jik Choi;Hun-Jun Park;Kiwon Ban
    • Korean Circulation Journal
    • /
    • v.53 no.8
    • /
    • pp.499-518
    • /
    • 2023
  • Cardiovascular diseases (CVDs), including coronary artery disease, stroke, heart failure, and hypertension, are the global leading causes of death, accounting for more than 30% of deaths worldwide. Although the risk factors of CVDs have been well understood and various treatment and preventive measures have been established, the mortality rate and the financial burden of CVDs are expected to grow exponentially over time due to the changes in lifestyles and increasing life expectancies of the present generation. Recent advancements in metagenomics and metabolomics analysis have identified gut microbiome and its associated metabolites as potential risk factors for CVDs, suggesting the possibility of developing more effective novel therapeutic strategies against CVD. In addition, increasing evidence has demonstrated the alterations in the ratio of Firmicutes to Bacteroidetes and the imbalance of microbial-dependent metabolites, including short-chain fatty acids and trimethylamine N-oxide, play a crucial role in the pathogenesis of CVD. However, the exact mechanism of action remains undefined to this day. In this review, we focus on the compositional changes in the gut microbiome and its related metabolites in various CVDs. Moreover, the potential treatment and preventive strategies targeting the gut microbiome and its metabolites are discussed.

Effects of inverse lighting and extreme heat diet on short chain fatty acid and blood lipid profile in extreme heat stress-exposed broilers (폭염 브로일러 닭의 혈액지질 및 짧은 사슬지방산에 대한 폭염사료와 역전점등 효과)

  • Park, Sang-Oh;Hwangbo, Jong;Park, Byung-Sung;Choi, Hee-Chul
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.400-410
    • /
    • 2013
  • This study was carried out to investigate the effects of feeding the broilers that are exposed to extreme heat stress by control of inverse lighting times with night restricted feeding of extreme heat diet(EHD1, 2: extreme heat diet) containing different amount of soy oil, molasses, amino acids and vitamin C on short chain fatty acid and blood lipid profile. 300 broiler chickens(Abaica strain) were randomized into four dietary treatment groups according to a randomized block design on the day they were hatched. The four dietary treatment groups were: T1(EHD 1, 10:00~19:00 Dark, 19:00~10:00 Light), T2(EHD 2, 10:00~19:00 Dark, 19:00~10:00 Light), T3(EHD 1, 09:00~18:00 Dark, 18:00~09:00 Light), T4(EHD 2, 09:00~18:00 Dark, 18:00~09:00 Light). The body weight gain of the broilers was highest in T2, and high in order T1, T4, T3(p<0.05). Weights of the lymphoid organ, thymus and bursa of Fabricius were high in T1, T2 as compared to T3, T4 but spleen was lower in T4 than T1, T2, T3(p<0.05). Blood triglyceride, total cholesterol and glucose were higher in T1, T2 than T3, T4(p<0.05). LDL-C was high in orderT4, T3, T2, T1 but HDL-C showed the opposite trend(p<0.05). Blood concentrations of IgG, IgG and IgM were higher in T1, T2 than inT3, T4, but the corticosterone concentration decreased significantly in them. In T1 and T2, Lactobacillus in the feces increased, but total aerobic bacteria, E.coli, coliform bacteria was decreased rather significantly, compared with those in T3 and T4(p<0.05). Concentrations of acetic acid, propionic acid and total SCFA in cecum were high in order T2, T1, T3, T4, but butyric acid, isobutyric acid, valeric acid, isovaleric acid were lower in T1, T2 than in T3, T4 (p<0.05).

Effect of Prebiotics on Intestinal Microflora and Fermentation Products in Pig In Vitro Model

  • Kim, Dong-Woon;Chae, Su-Jin;Cho, Sung-Back;Hwang, Ok-Hwa;Lee, Hyun-Jeong;Chung, Wan-Tae;Park, Jun-Cheal;Kim, In-Cheul;Kim, In-Ho
    • Journal of Animal Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.199-204
    • /
    • 2010
  • The objective of this study was to evaluate the effect of the different types and levels of prebiotics on intestinal microflora and fermentation products in the in vitro fermentation model. The prebiotcs used in this study were IMO (iso-malto oligosaccharide), CI (partially digested chicory-inulin), RA (raffinose) and CD (cyclodextrin). Experimental diet for growing pigs was predigested by digestive enzymes and this hydrolyzed diet was mixed with buffer solution containing 5% fresh swine feces. Then, the mixture was fermented with or without prebiotics at the concentrations of 0.5 and 1.0% for 24 h. Samples were taken at 24 h, and viable count of micoflora, gas, pH, volatile organic compounds and short-chain fatty acids were determined. The viable count of Enterobacteriaceae was significantly decreased (p<0.001) in all treatments added with prebiotics in comparison to control without prebiotics. However, the increase of lactic acid bacteria was observed in the prebiotics treatment. Gas production increased as the level of prebiotics increased. The pH values in the fermentation fluid decreased in a dose-dependent manner with increasing the concentration of prebiotics. The fermentation with prebiotics resulted in the reduction of malodorous compounds such as ammonia, hydrogen sulfide, indole and skatole. The increase in short-chain fatty acid (SCFA) production was observed in the treatments with prebiotics. In conclusion, the results of this study demonstrated that the fermentation with prebiotics was effective in reducing the formation of malodorous compounds and increasing lactic acid bacteria and SCFA. These effects depended on the concentration of prebiotics. Moreover, further study is needed to determine whether the in vitro efficacy on the reduction of malodorous compounds and increase of SCFA would also be observed in animals.

Flavor development in cheddar cheese (체다 치즈의 맛의 개발)

  • 정청송;유상훈
    • Journal of Applied Tourism Food and Beverage Management and Research
    • /
    • v.14 no.1
    • /
    • pp.59-77
    • /
    • 2003
  • This study was carried out to find a cholesterol removal rate, flavor development, and bitter amino acid productions in Cheddar cheese treated with -cyclodextrin ($\beta$-CD): l) Control (no homogenization, no $\beta$-CD), and 2) Milk treatment (1000 psi milk homogenization, 1 % $\beta$-CD). The cholesterol removal of the cheese were 79.3%. The production of short-chain free fatty acids (FF A) increased with a ripening time in both control and milk treated cheese. The releasing quantity of short-chain FFA was higher din milk treated cheese than control at 5 and 7 mo ripening. Not much difference was found in neutral volatile compounds production between samples. In bitter-tasted amino acids, milk treatment group produced much higher than control. In sensory analysis, texture score of control Cheddar cheese significantly increased, however, that in cholesterol-reduced cheese decreased dramatically with ripening time.

  • PDF

Effect of cooling water and inverse lighting on short chain fatty acid and blood lipid of broiler chickens in closed poultry house during hot weather (혹서기 무창계사에서 육계의 혈액지질 및 짧은 사슬지방산에 관한 역전점등과 냉각수 효과)

  • Park, Sang-Oh;Park, Byung-Sung;Hwangbo, Jong;Choi, Hee-Chul
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.31-43
    • /
    • 2014
  • This experiment evaluated the interaction effect of extreme heat diet(EHD), inverse lighting, and cool water on the growth performance of broiler chickens under extreme heat stress. There were 4 experimental groups (T1: EHD 1, 10:00-19:00 dark, 19:00-10:00 light, cold water $9^{\circ}C$; T2: EHD 2, 10:00-19:00 dark, 19:00-10:00 light, cold water $9^{\circ}C$; T3: EHD 1, 09:00-18:00 dark, 18:00-09:00 light, cold water $14^{\circ}C$; T4: EHD 2, 09:00-18:00 dark, 18:00-09:00 light, cold water $14^{\circ}C$), each group composed of 25 broilers and the experiment was repeated 3 times. EHD 1 contained soybean oil, molasses, methionine and lysine. EHD 2 contained all nutrients of EHD 1 and vitamin C additionally. As a result, T1 and T2 displayed higher body weight increase and diet intake compared to T3 and T4 (p<0.05). The weights of their liver and gizzard were similar but the weights of the thymus and bursa F were higher for T1 and T2 compared to that of T3 and T4 (p<0.05). It was observed that T1 and T2 displayed higher concentrations of blood triglyceride, total cholesterol, HDL-C and blood sugar compared to that of T3 and T4 but LDL-C level was higher for T3 and T4 compared to that of T1 and T2 (p<0.05). T1 and T2 displayed higher levels of immunity substances such as IgG, IgA and IgM compared to T3 and T4 but the blood level of corticosterone displayed to be lower for T1 and T2 compared to T3 and T4 (p<0.05). The T1 and T2 contained a higher amount of fecal lactobacillus compared to that of T3 and T4 but the T3 and T4 contained a higher amount of fecal E. coli, total aerobic bacteria, coliform bacteria compared to that of T1 and T2 (p<0.05). T1 and T2 displayed higher concentrations of cecal acetic acid, propionic acid and total short chain fatty acids compared to T3 and T4 but T3 and T4 displayed higher concentrations of butyric acid, isobutyric acid, valeric acid and isovaleric acid compared to T1 and T2 (p<0.05). These results have been observed that broiler chickens exposed to extreme heat stress with feeding EHD, inverse lighting and cold water would improve blood lipid, and elevate the production of immunity substance, beneficial microorganisms, and short chain fatty acids. This provision would also reduce the blood sugar consumption rate as energy sources and these effects will improve the growth performance of the broilers exposed to extreme heat.

Effects of Butyrate on Colorectal Cancer (대장암에 대한 butyrate의 효과)

  • Jin, Ji Young;Cho, Kwang Keun;Choi, In Soon
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.143-156
    • /
    • 2013
  • Due to the high incidence of cancer and cancer-related mortality in Korea, there is increased concern and psychological anxiety about this disease, leading to increasing numbers of cancer studies. Despite these, the trend of the cancer incidence rate has shown a significant increase. The detection of colorectal cancer, which has a high incidence rate, often tends to be delayed, causing a high mortality rate. Therefore, the prevention of colorectal cancer has become an important emergent issue. The cause of this cancer has not been confirmed. However, it may be attributable to westernized dietary patterns, which include consuming a high quantity of red meat. Consumption of dietary fiber promotes the production of butyrate short-chain fatty acids by enteric bacteria. In the treatment of cancer, anticancer medications have been shown to lead to the apoptosis of tumor cells, and a strong relationship between apoptosis mechanisms of tumor cells and cancer treatment has been confirmed. The results of many studies have confirmed that butyrate can directly promote the apoptosis of colorectal cancer cells. Therefore, increased consumption of dietary fiber, which promotes the production of butyrate shortchain fatty acids, can be expected to have an effect on the prevention and treatment of colorectal cancer.

Effects of Commercial Food Grade Enzyme on Acceleration of Ripening in U.F. Cheese Base Slurries (효소 첨가가 U.F. 치즈베이스 slurries의 숙성촉진에 미치는 영향)

  • Yoon, Kyung;Kwak, Hae-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.510-516
    • /
    • 1993
  • This study was conducted to investigate biochemical characteristics of enzyme-added cheese base slurries during accelerated ripening. Trichloroacetic acid (TCA) soluble nitrogen of cheese base slurries increased rapidly during the first day of ripening and the rate of increase slowed down thereafter. Cheese base slurries showed lower level in the production of the nitrogen than Cheddar cheese slurries. Producctions of phosphotungstic (PTA) soluble amino nitrogen also showed similar trends as TCA soluble nitrogen. Electrophoresis revealed that all caseins in both cheese base slurries and Cheddar cheese slurries were hydrolyzed, but whey proteins in cheese base slurries were little hydrolyzed. Cheese base slurries produced free amino acids little more than half of Cheddar cheese slurries. Both slurries showed similar increasing trend in production of short-chain free fatty acids. The specificity of the fatty acids in the slurries was similar to that of natural ripened cheese. The results of this study showed that addition of enzyme was effective to accelerate cheese base ripening.

  • PDF

Effect of Hormones and Short Chain Fatty Acids on CYP7A1 Gene Expression in HepG2 Cell (호르몬과 단쇄지방산이 HepG2 Cell 내에서 CYP7A1 발현에 미치는 효과)

  • Yang, Jeong-Lye;Lee, Hyun-Jung;Kim, Yang-Ha
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.5
    • /
    • pp.573-580
    • /
    • 2005
  • Cholesterol $7\alpha-hydroxylase$ (CYP7A1) is the rate-limiting enzyme in the conversion of cholesterol to bile acids and plays a central role in regulating cholesterol homeostasis. We previously showed that a fermentable $\beta-glucan$ ingestion decreased plasma cholesterol levels due to fecal bile acid excretion elevation involved inincrease of cholesterol $7\alpha-hydroxylase$ mRNA expression and activity. It is proposed that short chain fatty acids (SCFA) produced by cecal and colonic fermentation of soluble fiber are associated with cholesterol-lowering effect of fiber. In the present study, we investigated whether CYP7A1 expression is up-regulated by short chain fatty acids or by hormones in cultured human hepatoma (HepG2) cells. Confluent HepG2 cell were incubated with acetate, propionate, or butyrate at 1 mM concentration for 24 hrs. Acetate as well as propionate increased to 1.8-fold expression of CYP7A1 mRNA than the control. Butyrate also increased 1.5-fold expression of CYP7A1 mRNA. Our data show for the first time that SCFA increase expression of CYP7A1 mRNA. Adding insulin, dexamethasone and triiodothyronine $(1\;{\mu}M)$ to HepG2 cell increased the expression of CYP7A1 mRNA to $150\%,\;173\%,\;141\%$, respectively. These results suggest that SCFA produced by cecal fermentation stimulate enteric nervous system, in which secreted some neuropeptides may be responsible for change in cholesterol and bile acid metabolism. These findings suggest that SCFA are involved in lowering plasma cholesterol levels due to the up-regulation of CYP7A1 and bile acid synthesis.

Total Lipid and Total Fatty Acid Composition and Vitamin E Content of Human Mature Milk, Infant Formulas and Market Milk (인유, 조제 분유 및 시유의 총지방질 조성, 총지방산 조성 및 비타민E 함량의 비교)

  • Yoon, Tai-Heon;Im, Kyung-Ja;Jang, You-Kyung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.49-55
    • /
    • 1984
  • The lipid and fatty acid compositions and vitamin E content were analyzed in 48 human mature milk, 3 infant formulas (modified milk powder) and 8 market milk samples. The total lipid content in modified milk powder was similar those in human milk and market milk when total solids content of modified milk powder was corrected to that of human milk. In comparison with human milk, modified milk powder contained a lower proportion of triglycerides and higher proportions of phospholipids, free fatty acids and cholesterol esters. The ratios of phospholipids/triglycerides, total cholesterol / triglycerides and total tocopherol/total lipids in modified milk powder were significantly higher than those in human milk and market milk. The American recommendation for linoleic acid (0.7 IU/g) could be satisfied with human milk, modified milk powder and market milk. The proportions of short- and medium-chain even numbered saturates were higher and the proportions of long-chain derivatives of linoleic (${\omega}6$ series) and linolenic (${\omega}3$ series)acids were lower in modified milk powder and market milk than in human milk. It is concluded that in view of their levels in breast milk, the polyenoic derivatives of linoleic and linolenic acids must be taken into account when assessing infant foods.