• Title/Summary/Keyword: shock-absorbing

Search Result 117, Processing Time 0.025 seconds

The Effect of Shape of Core Cell on Shock Absorption Characteristics of Biomimetically Inspired Honeycomb Structures

  • Kim, Tae-Min;Kim, Jung-Soo
    • International Journal of Railway
    • /
    • v.4 no.4
    • /
    • pp.103-108
    • /
    • 2011
  • The effect of the core cell shape on shock absorption characteristics of biomimetically inspired honeycomb structures has been numerically investigated. The finite element models of honeycomb test specimen composed of five core cells of identical mass have been constructed, and numerical simulations have been run on PAMCRASH. The dimensions of the sides of core cells as well as the angle between the sides have been shown to influence the shock absorption characteristics of the honeycomb structure. The specimen with regular hexagonal core cell shape is found to show the best shock absorbing capacity, and specimen with rectangle-like core cell are found to provide good shock absorbing characteristics.

  • PDF

CONCEPT DESIGN THEORY OF SHOCK ABSORBING MUFFLERS FOR AIR-BORNE NOISE (유체기인 방사소음 저감용 소음기 개념설계 이론)

  • Kim, Sang-Myeong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.627-632
    • /
    • 2002
  • The paper considers acoustic analysis of the shock absorbing muffler within a rotary compressor. The internal space of the compressor is modelled as a combination of cavities and pipes. A simple one-dimensional impedance approach is used fur the acoustic analysis in the low frequency range, with ignoring the effects of gas flow and temperature gradients that are closely related to power efficiency of the compressor. Using the similarity between the vibration isolator and the shock absorbing muffler, the source strength transmissibility is newly proposed as a performance measure of the muffler and its validity is supported by power analysis. Some Important muffler design rules obtained are; (1) a muffler cavity and its opening throat should be used as a pair, (2) a long thin throat is desirable for high frequency noise isolation, (3) a large muffler cavity should be used with care since it shortens the working frequency range of the muffler. The rules were applied to redesign a compressor muffler currently in use, and a significant improvement was achieved by simply attaching a throat to the outlet holes of the muffler.

  • PDF

Tests on explosion-resisting properties of high-performance equal-sized-aggregate concrete composite sandwich plates

  • Yizhong Tan;Songlin Yue;Gan Li;Chao Li;Yihao Cheng;Wei Dai;Bo Zhang
    • Structural Engineering and Mechanics
    • /
    • v.87 no.4
    • /
    • pp.297-304
    • /
    • 2023
  • Targeted introduction of explosion-resisting and energy-absorbing materials and optimization of explosion-resisting composite structural styles in underground engineering are the most important measures for modern engineering protection. They could also improve the survivability of underground engineering in wartime. In order to test explosion-resisting and energy-absorbing effects of high-performance equal-sized-aggregate (HPESA) concrete, the explosive loading tests were conducted on HPESA concrete composite plates by field simple explosion craters. Time-history curves of the explosion pressure at the interfaces were obtained under six conditions with different explosion ranges and different thicknesses of the HPESA concrete plate. Test results show that under the same explosion range, composite plate structures with different thicknesses of the HPESA concrete plate differ significantly in terms of the wave-absorbing ability. Under the three thicknesses in the tests, the wave-absorbing ability is enhanced with the growing thickness and the maximum pressure attenuation index reaches 83.4%. The energy attenuation coefficient of the HPESA concrete plate under different conditions was regressively fitted. The natural logarithm relations between the interlayer plate thickness and the energy attenuation coefficient under the two explosion ranges were attained.

Investigation of Dynamic Absorbing System in the Gas-operated Gun with High Transmitted Shock Force (고충격 발생기구의 완충시스템 해석)

  • Kim, Hyo-Jun;Park, Young-Pil;Yang, Hyun-Seok;Choe, Eui-Jung;Lee, Sung-Bae;Hong, Kye-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.5
    • /
    • pp.389-396
    • /
    • 2002
  • In this study, the dynamic absorbing system for gas operated gun has been investigated. For this purpose, firstly. mathematical model of gas-operated shoulder-fired gun has been constructed. Through a series of experimental works using the devised test setup, the characteristic behavior of mathematical model was compared to the test results. In order to design the dynamic absorbing system, parameter optimization process has been performed based on the simplified isolation system under constraints of moving displacement and transmitted force. In order to implement the more efficient dynamic absorbing system, the characteristic performance of stroke-dependent variable damping system has been analyzed with some opening area curves. Finally, the performance of the designed dynamic absorbing system has been evaluated by simulation and experiment using the previous test apparatus.

소형항공기용 고정식 착륙장치의 동적특성에 관한 연구

  • Choi, Sun-Woo;Ahn, Seok-Min
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.191-196
    • /
    • 2004
  • Most of studies for landing gear have been performed to analyze the shock absorbing characteristics of oleo-pneumatic struts. But it is not easy to solve the dynamic specific properties of spring type composite landing gear using a present method. The shock absorbing abilities of oleo-pneumatic landing gear strut are under influence of the internal design method on the strut rather than the landing gear structure itself. Unlike oleo type, spring type composite strut absorbs the shock with structural strength and dynamic characteristics of the strut's material and shape. The tests and analysis for the shock absorbing rate and dynamic behavior of the spring type composite fixed landing gear for 4 seats small aircraft, have been performed using landing gear drop test rig.

  • PDF

Floating Floor of Multi-supporting System ( II ) (복합지지구조를 가진 뜬바닥 시스템 (II))

  • 박영환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.293-295
    • /
    • 2004
  • In this research, we suggest the effective technique that the thickness of slab isn't increased, and considering proper shock absorbing material and supporting point, we make the floating floor which has multi-supporting system floating floor. As the result, it is effective in reduction of heavy weight system as well as one of light weight

  • PDF

Floating Floor of Multi-Supporting System (복합지지구조를 가진 뜬바닥 시스템)

  • 박영환;정환돈;오호진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.928-931
    • /
    • 2003
  • In this research, we suggest the effective technique that the thickness of slab isn't increased, and considering proper shock absorbing material and supporting point, we make the floating floor which has multi-supporting system floating nut. As the result, it is effective in reduction of heavy weight system as well as one of light weight

  • PDF

SHOCK-ABSORBING BEHAVIOR OF TEMPORARY SOFT DENTURE LINERS (임시 연성 의치상 이장재의 충격 흡수에 관한 연구)

  • Chun, Yong-Suk;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.1
    • /
    • pp.151-167
    • /
    • 1996
  • Temporary soft liners can be used to prevent chronic soreness from dentures or to aid in its treatment are as adjuncts in tissue conditioning, for temporary obturators, and to stabilize baseplate or surgical stent. The purpose of this study was to evaluate the shock absorption properties of several temporary soft denture liners using a free drop test with an accelerometer. The materials tested inclued Coe-comfort, Softone, Tissue conditioner and Viscogel. The specimens were fabricated with the thickness of 1, 2, 3mm and were stored in distilled water at $37^{\circ}C$ for a day, 1, 2, and 3 weeks. Six samples were made with each material for each test condition and the shock-absorbing behavior was evaluated according to material, thickness and duration. The results were as following : 1. Softone of 3mm thickness stored for a day showed the most excellent shock absorbability. 2. The shock absorbing behavior of duration according to materials and thickness showed a day to be the highest and decreased in 1 week, 2 weeks and 3 weeks in that order(p<0.05). And there was no significant difference between durations in Tissue conditioner. 3. The shock absorbability of thickness according to materials and duration showed 3mm to be highest and decreased in the order of 2mm, 1mm(p<0.05). 4. In comparison of the shock absorbability of temporary soft denture liners according to thickness, there was statistically significant difference between Softone and Visocgel, Tissue conditioner, Coe-comfort / Viscogel and Tissue conditioner, Coe-comfort in 1,2mm thickness, and between Softone, Viscogel and Tissue conditioner, Coe-comfort in 3mm thickness (p<0.05).

  • PDF

Drop Test for the UAV Landing Gear Performance Verification (무인정찰기 착륙장치 성능입증을 위한 낙하시험)

  • Shin, Jeong-Woo;Lee, Seung-Gyu;Yang, Jin-Yeol;Kim, Sung-Joon;Hwang, In-Hee;Chung, Sang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.250-254
    • /
    • 2011
  • Main role of landing gear is to absorb the energy which is generated by aircraft lanidng and ground maneuvering. Generally, in order to absorb the impact energy during landing, oleo-pneumatic type shock absorber is used for aircraft landing gear. Oleo-pneumatic type shock absorber has a good energy absorbing efficiency and is light in weight because its structure is relatively simple. For the landing gear development, it is necessary to conduct drop test in order to verify shock absorbing performance. In the drop test, first, gas spring curve verification tests are conducted. Then, limit and reserve energy absorption drop tests are performed based on the STANAG 4671. The drop tests results with performance analysis results are presented.

  • PDF