• Title/Summary/Keyword: shock and blast

Search Result 98, Processing Time 0.029 seconds

High Power Laser Driven Shock Compression of Metals and Its Innovative Applications (고 출력 레이저에 의한 충격파 현상 연구 및 응용)

  • Lee, Hyun-Hee;Gwak, Min-Cheol;Choi, Ji-Hee;Yoh, Jai-Ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.11
    • /
    • pp.832-840
    • /
    • 2008
  • Ablation occurs at irradiance beyond $10^9\;W/cm^2$ with nanosecond and short laser pulses focused onto any materials. Phenomenologically, the surface temperature is instantaneously heated past its vaporization temperature. Before the surface layer is able to vaporize, underlying material will reach its vaporization temperature. Temperature and pressure of the underlying material are raised beyond their critical values, causing the surface to explode. The pressure over the irradiated surface from the recoil of vaporized material can be as high as $10^5\;MPa$. The interaction of high power nanosecond laser with a thin metal in air has been investigated. The nanosecond pulse laser beam in atmosphere generates intensive explosions of the materials. The explosive ejection of materials make the surrounding gas compressed, which form a shock wave that travels at several thousand meters per second. To understand the laser ablation mechanism including the heating and ionization of the metal after lasing, the temporal evolution of shock waves is captured on an ICCD camera through laser flash shadowgraphy. The expansion of shock wave in atmosphere was found to agree with the Sedov's self-similar spherical blast wave solution.

A Study on Notch Bit System for Controlling Blast Vibration and Over-break in Rock Mass (발파공해 해소 및 여굴 최소화를 위한 선균열 암굴착 노치장비 개발에 관한 연구)

  • Jeong, Dong-Ho;Moon, Sang-Jo;An, Dae-Jin;Jeong, Won-Joon;Kim, Eun-Kwan;Kim, Dong-Gyou
    • Tunnel and Underground Space
    • /
    • v.17 no.3 s.68
    • /
    • pp.216-224
    • /
    • 2007
  • Blasting, using shock and dynamic energy of explosive, is very effective tunnel excavation method. But it had serious problem which is the blast vibration and over-break. In recent study, pre-cracked excavation method using notch hole reduced blast vibration and over-break in tunnel, so we performed study about developing notch bit system for making notch hole. In order to make notch hole effectively we had perform drilling experiments changing length and height of notch and in order to improve speed and precision of drilling we had developed notch bit system which consists of drilling bit, notch bit, adapter and notch guide.

Probabilistic estimation of fully coupled blasting pressure transmitted to rock mass II - Estimation of rise time - (암반에 전달된 밀장전 발파입력의 획률론적 예측 II - 최대압력 도달시간 예측을 중심으로 -)

  • Park, Bong-Ki;Lee, In-Mo;Kim, Sang-Gyun;Lee, Sang-Don;Cho, Kook-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.1
    • /
    • pp.25-40
    • /
    • 2004
  • The supersonic shock wave generated by fully coupled explosion will change into subsonic shock wave, plastic wave, and elastic wave consecutively as the wave propagates through rock mass. While the estimation of the blast-induced peak pressure was the main aim of the companion paper, this paper will concentrate on the estimation of the rise time of blast-induced pressure. The rise time can be expressed as a function of explosive density, isentropic exponent, detonation velocity, exponential coefficient of the peak pressure attenuation, dynamic yield stress, plastic wave velocity, elastic wave velocity, rock density, Hugoniot parameters, etc. Parametric analysis was performed to pinpoint the most influential parameter that affects the rise time and it was found that rock properties are more sensitive than explosive properties. The probabilistic distribution of the rise time is evaluated by the Rosenblueth'S point estimate method from the probabilistic distributions of explosive properties and rock properties. Numerical analysis was performed to figure out the effect of rock properties and explosive properties on the uncertainty of blast-induced vibration. Uncertainty analysis showed that uncertainty of rock properties constitutes the main portion of blast-induced vibration uncertainty rather than that of explosive properties. Numerical analysis also showed that the loading rate, which is the ratio of the peak blasting pressure to the rise time, is the main influential factor on blast-induced vibration. The loading rate is again more influenced by rock properties than by explosive properties.

  • PDF

Characteristics of Solar Wind Density Depletions During Solar Cycles 23 and 24

  • Park, Keunchan;Lee, Jeongwoo;Yi, Yu;Lee, Jaejin;Sohn, Jongdae
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.105-110
    • /
    • 2017
  • Solar wind density depletions are phenomena that solar wind density is rapidly decreased and keep the state. They are generally believed to be caused by the interplanetary (IP) shocks. However, there are other cases that are hardly associated with IP shocks. We set up a hypothesis for this phenomenon and analyze this study. We have collected the solar wind parameters such as density, speed and interplanetary magnetic field (IMF) data related to the solar wind density depletion events during the period from 1996 to 2013 that are obtained with the advanced composition explorer (ACE) and the Wind satellite. We also calculate two pressures (magnetic, dynamic) and analyze the relation with density depletion. As a result, we found total 53 events and the most these phenomena's sources caused by IP shock are interplanetary coronal mass ejection (ICME). We also found that solar wind density depletions are scarcely related with IP shock's parameters. The solar wind density is correlated with solar wind dynamic pressure within density depletion. However, the solar wind density has an little anti-correlation with IMF strength during all events of solar wind density depletion, regardless of the presence of IP shocks. Additionally, In 47 events of IP shocks, we find 6 events that show a feature of blast wave. The quantities of IP shocks are weaker than blast wave from the Sun, they are declined in a short time after increasing rapidly. We thus argue that IMF strength or dynamic pressure are an important factor in understanding the nature of solar wind density depletion. Since IMF strength and solar wind speed varies with solar cycle, we will also investigate the characteristics of solar wind density depletion events in different phases of solar cycle as an additional clue to their physical nature.

RADIO EMISSION FROM WEAK SPHERICAL SHOCKS IN THE OUTSKIRTS OF GALAXY CLUSTERS

  • Kang, Hyesung
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.2
    • /
    • pp.155-164
    • /
    • 2015
  • In Kang (2015) we calculated the acceleration of cosmic-ray electrons at weak spherical shocks that are expected to form in the cluster outskirts, and estimated the diffuse synchrotron radiation emitted by those electrons. There we demonstrated that, at decelerating spherical shocks, the volume integrated spectra of both electrons and radiation deviate significantly from the test-particle power-laws predicted for constant planar shocks, because the shock compression ratio and the flux of inject electrons decrease in time. In this study, we consider spherical blast waves propagating through a constant density core surrounded by an isothermal halo with ρ ∝ r−n in order to explore how the deceleration of the shock affects the radio emission from accelerated electrons. The surface brightness profile and the volumeintegrated radio spectrum of the model shocks are calculated by assuming a ribbon-like shock surface on a spherical shell and the associated downstream region of relativistic electrons. If the postshock magnetic field strength is about 0.7 or 7 µG, at the shock age of ∼ 50 Myr, the volume-integrated radio spectrum steepens gradually with the spectral index from αinj to αinj + 0.5 over 0.1–10 GHz, where αinj is the injection index at the shock position expected from the diffusive shock acceleration theory. Such gradual steepening could explain the curved radio spectrum of the radio relic in cluster A2266, which was interpreted as a broken power-law by Trasatti et al. (2015), if the relic shock is young enough so that the break frequency is around 1 GHz.

Analysis of heat, cold or salinity stress-inducible genes in the Pacific abalone, Haliotis discus hannai, by suppression subtractive hybridization

  • Nam, Bo-Hye;Park, Eun-Mi;Kim, Young-Ok;Kim, Dong-Gyun;Jee, Young-Ju;Lee, Sang-Jun;An, Cheul Min
    • The Korean Journal of Malacology
    • /
    • v.29 no.3
    • /
    • pp.181-187
    • /
    • 2013
  • In order to investigate environmental stress inducible genes in abalone, we analyzed differentially expressed transcripts from a Pacific abalone, Haliotis discus hannai, after exposure to heat-, cold- or hyposalinity-shock by suppression subtractive hybridization (SSH) method. 1,074 unique sequences from SSH libraries were composed to 115 clusters and 986 singletons, the overall redundancy of the library was 16.3%. From the BLAST search, of the 1,316 ESTs, 998 ESTs (75.8%) were identified as known genes, but 318 clones (24.2%) did not match to any previously described genes. From the comparison results of ESTs pattern of three SSH cDNA libraries, the most abundant EST was different in each SSH library: small heat shock protein p26 (sHSP26) in heat-shock, trypsinogen 2 in cold-shock, and actin in hyposalinity SSH cDNA library. Based on sequence similarities, several response-to-stress genes such as heat shock proteins (HSPs) were identified commonly from the abalone SSH libraries. HSP70 gene was induced by environmental stress regardless of temperature-shock or salinity-stress, while the increase of sHSP26 mRNA expression was not detected in cold-shock but in heat-shock condition. These results suggest that the suppression subtractive hybridization method is an efficient way to isolate differentially expressed gene from the invertebrate environmental stress-response transcriptome.

Study on the Calculation of the Blast Pressure of Vapor Cloud Explosions by Analyzing Plant Explosion Cases (플랜트 폭발 사례 분석을 통한 증기운 폭발의 폭압 산정법 연구)

  • Lee, Seung-Hoon;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Vapor cloud explosions show different characteristics from that caused by ordinary TNT explosives and their loading effect is similar to pressure waves. Typical methods used for blast pressure calculations are the TNT-equivalent method and multi-energy method. The TNT-equivalent method is based on shock waves, similar to a detonation phenomenon, and multi-energy method is based on pressure waves, similar to a deflagration phenomenon. This study was conducted to derive an appropriate blast pressure by applying various plant explosion cases. SDOF analysis and nonlinear dynamic analysis were performed to compare the degree of deformation and damage of the selected structural members for the explosion cases. The results indicated that the multi-energy method was more exact than the TNT-equivalent method in predicting the blast pressure of vapor cloud explosions. The blast pressure of vapor cloud explosion in plants can be more accurately calculated by assuming the charge strength of multi-energy method as 7 or 8.

Impact Resistance Characteristics of HPFRCC Depending on Various Fiber Replacing Ratio (섬유혼입율 변화에 따른 HPFRCC의 내충격 특성)

  • Park, Yong-Jun;Kim, Dae-Gun;Mun, Gyeong-Sik;Han, Sang-Hyu;Kim, Gyu-Yong;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.75-76
    • /
    • 2015
  • This study has examined the impact resistance and blast resistance characteristics of HPFRCC as a research on impact resistance and blast resistance characteristics using high volume mortar and high velocity projectile for evaluating the protection performance of actual buildings as small quantity experiment of laboratory conditions is performed although there was an instance of performing research on mortar that has reinforced fiber followed by the rise of problems on the damage of human life and buildings created due to explosion and shock. As a result, the destruction loss area and depth have decreased in case of the surface compared to the rear side. As tensile strength and tenacity have increased with the increased fiber replacing ratio, a tendency of destruction loss area and depth getting decreased was shown as the impact resistance has increased.

  • PDF

Damage identification of masonry arch bridge under blast loading using smoothed particle hydrodynamics (SPH) method

  • Amin Bagherzadeh Azar;Ali Sari
    • Structural Engineering and Mechanics
    • /
    • v.91 no.1
    • /
    • pp.103-121
    • /
    • 2024
  • The smoothed particle hydrodynamics (SPH) method is a numerical technique used in dynamic analysis to simulate the fluid-like behavior of materials under extreme conditions, such as those encountered in explosions or high velocity impacts. In SPH, fluid or solid materials are discretized into particles. These particles interact with each other based on certain smoothing kernels, allowing the simulation of fluid flows and predict the response of solid materials to shock waves, like deformation, cracking or failure. One of the main advantages of SPH is its ability to simulate these phenomena without a fixed grid, making it particularly suitable for analyzing complex geometries. In this study, the structural damage to a masonry arch bridge subjected to blast loading was investigated. A high-fidelity micro-model was created and the explosives were modeled using the SPH approach. The Johnson-Holmquist II damage model and the Mohr-Coulomb material model were considered to evaluate the masonry and backfill properties. Consistent with the principles of the JH-II model, the authors developed a VUMAT code. The explosive charges (50 kg, 168 kg, 425 kg and 1000 kg) were placed in close proximity to the deck and pier of a bridge. The results showed that the 50 kg charges, which could have been placed near the pier by a terrorist, had only a limited effect on the piers. Instead, this charge caused a vertical displacement of the deck due to the confinement effect. Conversely, a 1000 kg TNT charge placed 100 cm above the deck caused significant damage to the bridge.

DYNAMICAL EVOLUTION OF SUPERNOVA REMNANT VRO 42.05.01

  • Choe, Seung-Urn;Jung, Hyun-Chul
    • Publications of The Korean Astronomical Society
    • /
    • v.12 no.1
    • /
    • pp.173-183
    • /
    • 1997
  • We have numerically simulated the evolution of supernova remnant VRO 42.05.01(G166.0+43) in order to understand its morphology m radio and X-ray observations as well as the dynamical interaction of the supernova remnant with the surrounding interstellar medium. The Radio and ROSAT observations suggest that the unusual morphology of VRO 42.05.01 is caused by a supernova blast wave breaking out of the cloud boundary where the supernova event occurred, and expanding into another cloud across a much less dense and presumably hot cavity. Our numerical results are consistent with the interactions of a passing supernova blast wave with the clouds across the cavity. We discuss the implications of our results on the dynamics of VRO 42.05.01 such as the reverse shocks, the rejuvenation of the hot cavity, and the reflected shocks formed by the reverse shock collisions. We have theoretically mapped the radio continuum(1.4 GHz) and X-ray(0.1~2 keV) morphology which are consistent with the observational ones.

  • PDF