• 제목/요약/키워드: shock Load

Search Result 249, Processing Time 0.028 seconds

Thermal Shock Resistance of Bilayered YSZ Thermal Barrier Coating

  • Lee, Dong Heon;Kim, Tae Woo;Lee, Kee Sung;Kim, Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.5
    • /
    • pp.452-460
    • /
    • 2018
  • This study investigate changes in mechanical behaviors such as indentation load-displacement and hardness of thermal barrier coatings (TBCs) using cycling of thermal shock test. Relatively dense and porous TBCs on nickel-based bondcoat/super alloy are prepared using different starting granules, 204C-NS and 204NS commercial powers, and the effect of double layers of 204C-NS on 204NS and 204NS on 204C-NS are investigated. The highest temperature applied during thermal shock test is $1100^{\circ}C$ and the maximum number of cycles is 1,200. The results indicate that bilayered TBC showed a relatively mechanically resistant property during thermal shock cycles and that the mechanical behavior is influenced by the microstructure of TBCs by exposure to high temperature during tests or different starting granules.

Design of Knee-Pelvis Joint in the Biped Robot for Shock Reduction and Gravity Compensation (충격 감소 및 중력 보상을 위한 이족보행로봇의 무릎-골반 관절 설계)

  • Kim, Young-Min;Kim, Yong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.136-142
    • /
    • 2015
  • In the paper, a design method of knee and pelvis joint in the biped robot is proposed for shock absorption and gravity compensation. Similarly to the human's body, the knee joints of the biped robot support most body weight and get a shock from the landing motion of the foot on the floor. The torque of joint motor is also increased sharply to keep the balance of the robot. Knee and pelvis joints with the spring are designed to compensate the gravity force and reduce the contact shock of the robot. To verify the efficiency of the proposed design method, we develope a biped robot with the joint mechanism using springs. At first, we experiment with the developed robot on the static motions such as the bent-knee posture both without load and with load on the flat ground, and the balance posture on the incline plane. The current of knee joint is measured to analyze the impact force and energy consumption of the joint motors. Also, we observe the motor current of knee and pelvis joints for the walking motion of the biped robot. The current responses of joint motors show that the proposed method has an effect on shock reduction and gravity compensation, and improve the energy efficiency of walking motions for the biped robot.

Shock Attenuation Mechanism in Drop Landing According to the Backpack Weight Changes (드롭랜딩 시 backpack 중량 변화에 따른 충격 흡수 기전)

  • Choi, Chi-Sun;Nam, Ki-Jeong;Shin, In-Sik;Seo, Jung-Suk;Eun, Seon-Deok;Kim, Suk-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.25-35
    • /
    • 2006
  • The purpose of this study was to investigate the shock attenuation mechanisms while varying the loads in a backpack during drop landing. Ten subjects (age: $22.8{\pm}3.6$, height: $173.5{\pm}4.3$, weight: $70.4{\pm}5.2$) performed drop landing under five varying loads (0, 5kg. 10kg. 20kg. 30kg). By employing two cameras (Sony VX2100) the following kinematic variables (phase time, joint rotational angle and velocity of ankle, knee and hip) were calculated by applying 2D motion analysis. Additional data, i.e. max vertical ground force (VGRF) and acceleration, was acquired by using two AMTI Force plates and a Noraxon Inline Accelerometer Sensor. Through analysing the power spectrum density (PSD), drop landing patterns were classified into four groups and each group was discovered to have a different shock attenuation mechanism. The first pattern that appeared at landing was that the right leg absorbed most of the shock attenuation. The second pattern to appear was that subject quickly transferred the load from the right leg to the left leg as quickly as possible. Thus, this illustrated that two shock attenuation mechanisms occurred during drop landing under varying load conditions.

A Experimental Study to Understand of a Characteristics of a Piezo-Generator using Impact Energy (충격에너지를 활용한 압전 발전기의 특성을 이해하기 위한 실험 연구)

  • Lee, Jaejun;Moon, Hakyong;Kwon, Sooahn;Ryu, Seungki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5D
    • /
    • pp.689-695
    • /
    • 2011
  • In this paper, available power generation on the road from renewable energy technologies on how to use the piezoelectric effect has been studied. A lot of vehicles on road that can generate electricity using renewable energy technology as part of the external shock to convert the load into electrical energy using piezoelectric effect piezoelectric generator can be applied to road space. Piezoelectric power harvesting using piezoelectric ceramics for the development of impact load characteristics were tested as function of various experimental design such as generator design and array of piezo-ceramic. To design the piezoelectric generator, the characteristics of piezoelectric ceremic were compared depending on the type of impact load as function of impact load, shock-absorbing.

Determination of Blast Load on the Boreholes Wall Using Decoupled Charge (Decoupling 장전시 천공벽에 작용하는 발파하중의 산정)

  • Kim, Sang-Gyun;Lee, In-Mo;Choi, Jong-Won;Kim, Shin;Lee, Du-Wha
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.209-216
    • /
    • 1999
  • In tunneling and road cuts by blasting, it is of the utmost importance that the remaining rock is of high quality in order to avoid rockfall, rockslides and excessive maintenance work. Therefore, numerous blasting techniques which make use of decoupled charge or shock wave superposition effect have been used to control overbrake. In this paper. some approximate method for the determination of blast load according to the charge condition was introduced at first and, instrumented tests were conducted in small scale transparent material to investigate the shape and amplitude of blast load around the bore hole. Compare to the fully coupled charge, low amplitude of blast load around the bore hole was observed in the decoupled charge and explosion gas pressure was important in the shape of blast load. Therefore, quasi-static behaviour of the crack pattern was shown due to low loading rate.

  • PDF

Experimental and Computational Studies of FSS-RSS Phenomena in an Over-Expanded Nozzle (과팽창 노즐 내에 발생하는 FSS-RSS 현상에 관한 실험적 및 수치해석적 연구)

  • Lee, Jong-Sung;Kim, Heuy-Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.3
    • /
    • pp.56-62
    • /
    • 2010
  • The interaction patterns between shock wave and boundary layer in a rocket nozzle are mainly classified into two categories, FSS(Free Shock Separation) and RSS(Restricted Shock Separation), both of which are associated with the thrust characteristics as well as side loads of the engine. According to the previous investigations, strong side loads of the engine are produced during the period of transition from FSS to RSS or vice versa. The present work aims at investigating the unsteady behavior of the separation shock waves in a two-dimensional supersonic nozzle, using experimental method and CFD. Schlieren optical method was employed to visualize the time-mean and time-dependent shock motions in the nozzle. The unsteady, compressible N-S equations with SST K-$\omega$ turbulence closure were solved using a fully implicit finite volume scheme. The results obtained show the separation shock motions during the transition of the interaction pattern.

Design of Landing Gear Shock Absorber Using Pressure-relief Valve (Pressure-relief valve 를 적용한 착륙장치 완충장치 설계)

  • Kim, Tae-Uk;Shin, Jeong-Woo;Hwang, In-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.508-511
    • /
    • 2008
  • The most landing gear use oleo-pneumatic shock strut to absorb the impact energy during touchdown. The shock strut is composed of the oil damper and the gas spring, especially the oil damper provides resistance force which is proportional to the square of landing speed. In case of high landing speed, the abnormal peak load can be occurred and transferred to the airframe structure. To prevent this, the pressure-relief valve is used to limit the damping force under the specific level. In this paper, it is presented the design process to find optimal damping and analysis results using pressure-relief valve.

  • PDF

The Effect of Pyro Shock on Canister with Composite Sandwich Panel (복합재 샌드위치 패널 발사관의 폭발충격 영향도 분석)

  • Choi, Wonhong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.667-673
    • /
    • 2016
  • Canister with composite sandwich panel has been suggested owing to its higher stiffness and strength over a weight for square shaped canisters. The pyro shock induced by a short time explosion inside a canister is generally considered to be the most severe source of load affecting on the entire structure. Therefore, in this study, the approach and modeling method to identify the effect of pyro shock on canister with composite sandwich panel in a numerical way were mainly discussed. Moreover, the verification was implemented through comparison with test results.

A Study on Design Method of Blast Hardened Bulkhead Considering the Response of Shock Impulse (충격량에 대한 응답을 고려한 폭발강화격벽 설계 방법 연구)

  • Myojung Kwak;Joonyoung Yoon;Seungmin Kwon;Yoojeong Noh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.1
    • /
    • pp.10-19
    • /
    • 2023
  • Blast Hardened Bulkhead (BHB) is an important measure that can increase the ship's survivability as well as protect the lives of the crew by mitigating the damage extent caused by an internal explosion in the ship. In particular, both the pressure and the shock impulse should be considered when designing the BHB against reflected shock waves having a high pressure with a short duration. This study proposes a design method for BHB that considers both the pressure and the shock impulse generated during the internal explosion. In addition, analysis and design concepts for accident loads such as explosion, fire, and collision of NORSOK and DNVGL, one of the international design guidelines for the curtain plate type blast hardened bulkhead type applied by the Korean Navy, are utilized. If this method is applied, it is expected that it can be used as a design concept for the pressure as well as the shock impulse of the explosion load of the curtain plate.

COMS Shock Test Assessment by Using the Extrapolation Method (외삽법을 이용한 천리안위성 충격시험 분석)

  • Lee, Ho-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.439-445
    • /
    • 2012
  • The COMS(Communication, Ocean, and Meteorological Satellite) is subjected to shock loads when the stage or fairing of a launch vehicle is separated and the satellite is separated from the launch vehicle during the launch vehicle flight. And, after the satellite is separated from the launcher, the COMS is subjected to shock loads when the solar array is deployed, Ka-Band communication antenna is deployed, and meteorological imager radiator cover is released. In order to validate the satellite safety against these shock loads on ground, shock tests were performed. In this paper, the shock tests performed in the course of the COMS development are described, and the method to assess the test result is presented with an example of Geostationary Ocean Color Imager(GOCI). In Ariane-5 launch vehicle, the clampband release shock for satellite separation is lower than the fairing or stage separation. In this paper, the extrapolation method to take into account the maximum shock load from the launch vehicle by using the satellite separation shock test result is also introduced.