• Title/Summary/Keyword: shock Load

Search Result 249, Processing Time 0.022 seconds

Simplified Shock Response Analysis for Submerged Floating Railway against Underwater Explosion (수중폭발에 의한 해중철도의 간이 충격 응답 해석)

  • Seo, Sung-Il;Sa-Gong, Myung;Son, Seung-Wan
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.2
    • /
    • pp.100-105
    • /
    • 2014
  • To design a submerged floating railway that is safe against underwater explosions, railway behavior must be investigated and clarified. In this paper, shock waves and impulse pressures generated by a charge away from the submerged floating railway are expressed using experimental formulas. The submerged floating railway tethered by mooring lines is modeled as a simply supported beam with elastic springs. Finite element analysis for the beam model subjected to impulse loading is conducted so that the response of the submerged floating railway can be investigated. For design purposes, a simplified analysis method combined with dynamic load factor is proposed for the same model. Maximum deformation and internal forces are calculated and compared with the time dependent analysis results. It is shown that the simplified analysis results show good agreement.

Effect of Different Drop Heights and Load on Lower Extremity Kinetics in Landing Task (착지 과제에서 낙하높이와 중량이 하지역학에 미치는 영향)

  • Hyun, Seunghyun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.115-121
    • /
    • 2021
  • Human's landing strategies have been explained through lower extremity kinetics in various conditions. However, how lower extremity kinetics respond when the two conditions between a load and landing height are combined is not yet understood. To achieve the purpose of this study, a total of 20 men and women were subjected to drop landing according to a load(No load, 10%, 20%, 30% of the body weight) at various landing heights(0.3 m, 0.4 m, 0.5 m). As a result of the study, the main effect of a load was not statistically significant in all variables. But increasing of the landing heights showed more flexion angle which was statistically significant in knee joint. In addition, as the landing height increased, the medial-lateral, anterior-posterior, vertical force, and loading rate increased, while time to peak vertical force decreased which was statistically significant. Thus, humans can successfully perform the landing motion even if the load is changed at various heights. However, it reacted more sensitively to the change in landing height than that load condition. The landing height can be prepared for recognition and shock absorption through visual information, but the weight level is difficult for the body to perceive and explains why it is more difficult to apply it to the landing strategy mechanism for shock absorption.

Spin-up, Spring-back Load Analysis of KC-100 Nose Landing Gear using Explicit Finite Element Method (외연적 유한요소법을 이용한 KC-100 전방착륙장치 Spin-up, Spring-back 하중 해석)

  • Park, Ill-Kyung;Kim, Sung-Jun;Ahn, Seok-Min
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.51-57
    • /
    • 2011
  • The spin-up and the spring-back are most severe load cases in the aircraft landing gear design. These load cases are caused by reciprocal action of complex physical phenomenon such as the friction between a tire and ground, inertia of the rotation of a tire and the flexibility of a landing gear structure. Generally, the empirical formula or the theoretical formula is used to calculate the spin-up and spring-back load in the early stage of the development program of the aircraft landing gear. After the materialization of the design of a landing gear, spin-up and spring-back load are acquired by the free drop test. In this study, the spin-up and the spring-back load of the rubber shock absorber type KC-100 nose landing gear are calculated by the explicit finite element analysis. Through this analysis, more accurate and realistic spin-up and spring back loads could be applied to the early phase of the development of the aircraft landing gear.

A Speed Control for the Reduction of the Shift Shocks in Electric Vehicles with a Two-Speed AMT

  • Kim, Young-Ki;Kim, Hag-Wone;Lee, In-Seok;Park, Sung-Min;Mok, Hyung-Soo
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1355-1366
    • /
    • 2016
  • In the present paper, a speed control algorithm with fast response characteristics is proposed to reduce the shift shock of medium/large-sized electric vehicles equipped with a two-speed AMT. Shift shocks, which are closely related with to the vehicles' ride comfort, occur due to the difference between the speed of the motor shaft and the load shaft when the gear is engaged. The proposed speed control method for shift shock reduction can quickly synchronize speeds occurring due to differences in the gear ratios during speed shifts in AMT systems by speed command feed-forward compensation and a state feedback controller. As a result, efficient shift results without any shift shock can be obtained. The proposed speed control method was applied to a 9 m- long medium- sized electric bus to demonstrate the validity through a simulated analysis and experiments.

Effects of Sinusoidal Vibration Fatigue on Compression Strength of Corrugated Fiberboard Container for Packaging of Fruits

  • Jung, Hyun-Mo;Kim, Jong-Kyoung;Kim, Man-Soo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.16 no.1
    • /
    • pp.1-4
    • /
    • 2010
  • The compression strength of corrugated fiberboard containers for packaging the agricultural products rapidly decreases because of various environmental conditions during distribution of unitized products. Among various environmental conditions, the main factors affecting the compression strength of corrugated fiberboard are absorption of moisture, long-term accumulative load, and fatigue caused by shock and vibration. An estimated rate of damage for fruit during distribution is about 30~40% owing to the shock and vibration. This study was carried out to characterize the durability of corrugated fiberboard containers for packaging the fruits and vegetables under simulated transportation environment. After the packaging freight was vibrated at various experimental conditions, the compression test for the packaging was performed. The compression strength of corrugated fiberboard containers decreased with loading weight and vibration time. The multiple nonlinear regression equation ($R^2$ = 0.9198) for predicting the decreasing rate of compression strength of corrugated fiberboard containers were developed using four independent variables such as input acceleration level, input frequency, loading weight and vibration time.

  • PDF

Durability of Corrugated Fiberboard Container for Fruit and Vegetables by Vibration Fatigue at Simulated Transportation Environment (모의 수송 환경에서의 청과물 골판지 상자의 진동 피로에 따른 내구성)

  • Kim M. S.;Jung H. M.;Kim K. B.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.2 s.109
    • /
    • pp.89-94
    • /
    • 2005
  • The compression strength of corrugated fiberboard container for packaging the agricultural products rapidly decreases because of various environmental conditions during distribution of unitized products. Among various environmental conditions, the main factors affecting the compression strength of corrugated fiberboard are absorption of moisture, long-term accumulative load, and fatigue caused by shock and vibration. An estimated rate of damage for fruit during distribution is about from 30 to 40 percent owing to the shock and vibration. This study was carried out to characterize the durability of corrugated fiberboard container for packaging the fruit and vegetables under simulated transportation environment. The vibration test system was constructed to simulate the land transportation using truck. After the package with corrugated fiberboard container was vibrated by vibration test system at various experimental conditions, the compression test for the package was performed. The compression strength of corrugated fiberboard container decreased with loading weight and vibrating time. The multiple nonlinear regression equation for predicting the decreasing rate of compression strength of corrugated fiberboard containers were developed using four independent variables such as input acceleration level, input frequency, loading weight and vibrating time. The influence of loading weight on the decreasing rate of corrugated fiberboard container was larger than other variables.

Development of Vibration Absorption Device for the Transportation-Trailer System (IV) - Connecting Hitch, Leaf Spring and Shock Absorber Suspension - (수송 트레일러의 충격흡수장치 개발 (IV) - 동력경운기 적재함의 연결히치, 판스프링, 쇽업쇼바 -)

  • Hong, Jong Ho;Wu, Yong Gen
    • Journal of Biosystems Engineering
    • /
    • v.37 no.6
    • /
    • pp.359-364
    • /
    • 2012
  • Purpose: This study was conducted to analyze the vibration absorption effect for the agricultural product transportation-trailer equipped with vibration absorbable connecting hitch, leaf spring suspension, and shock absorber simultaneously (HLS), comparing with the trailer equipped with vibration absorbable connecting hitch only(H), trailer equipped with connecting hitch and leaf spring suspension (HL), and existing trailer with no vibration absorption device (E). Methods: Vertical accelerations were measured at driver seat and front, middle, rear parts of trailer bottom with no load for 4 types of transportation-trailer, and analyzed using FFT analyzer. Results: The magnitude of average vibration accelerations occurred up to 20 Hz, at this low frequencies the severe damage for agricultural products could be represented, was lower (maximum 6 times) for HLS trailer compared with H trailer. And vibration absorption effect for HLS trailer was also higher up to 40-80 Hz and 80-100 Hz, but the difference was less. At driver seat, the vibration absorption effect was high severely for HL and HLS trailer, and the magnitude of vibration acceleration was showed less difference in comparing at trailer bottom. Conclusions: From the test results, it could be recommended that the agricultural products transportation trailer should be equipped with vibration absorption device of HLS.

SHPB Tests for Rock Dynamic Behavior by Shock Loading (충격하중에 의한 암석의 동적거동 측정시험장치)

  • Park, Chul-Whan;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.318-324
    • /
    • 2010
  • Dynamic properties of materials by shock loads such as rock blasting and earthquake are recently attracted in the design of aboveground and underground structures. The advance of measuring devices enables to obtain the whole histories of stress and strain in rock specimen of which the failure is completed in several hundred microseconds. The SHPB has been a popular and promising technique to study the dynamic behavior of rock. And the dynamic compressive, tensile and other test with this experiment system are planned to be Suggested Methods of ISRM. This technical paper is to introduced one study article which focuses the design of 3S (special shaped striker) to produce the half-sine wave to eliminate the problems of the rectangular wave. This article is also describing the advantage of half-sine incident wave and size effect of rock dynamic strength.

An Accurate Analysis for Sandwich Steel Beams with Graded Corrugated Core Under Dynamic Impulse

  • Rokaya, Asmita;Kim, Jeongho
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1541-1559
    • /
    • 2018
  • This paper addresses the dynamic loading characteristics of the shock tube onto sandwich steel beams as an efficient and accurate alternative to time consuming and complicated fluid structure interaction using finite element modeling. The corrugated sandwich steel beam consists of top and bottom flat substrates of steel 1018 and corrugated cores of steel 1008. The corrugated core layers are arranged with non-uniform thicknesses thus making sandwich beam graded. This sandwich beam is analogous to a steel beam with web and flanges. Substrates correspond to flanges and cores to web. The stress-strain relations of steel 1018 at high strain rates are measured using the split-Hopkinson pressure. Both carbon steels are assumed to follow bilinear strain hardening and strain rate-dependence. The present finite element modeling procedure with an improved dynamic impulse loading assumption is validated with a set of shock tube experiments, and it provides excellent correlation based on Russell error estimation with the test results. Four corrugated graded steel core arrangements are taken into account for core design parameters in order to maximize mitigation of blast load effects onto the structure. In addition, numerical study of four corrugated steel core placed in a reverse order is done using the validated finite element model. The dynamic behavior of the reversed steel core arrangement is compared with the normal core arrangement for deflections, contact force between support and specimen and plastic energy absorption.

Design of a Variable-Stiffness Type Safety Joint for Service Robots (서비스 로봇용 가변강성 형 안전관절의 설계)

  • Jeong, Jae-Jin;Chang, Seung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.128-134
    • /
    • 2009
  • This paper aims to design a variable-stiffness type economical safety joint for service robots. The safety joint was designed to have a passive shock absorbing mechanism for protecting human from a catastrophic collision under service condition of robots. A simple mechanism composed of two action disks for switching the load transfer, a spring and a screw for pre-load was proposed. In order to evaluate the performance of the safety joint a testing platform which can carry out the static and impact tests was also designed and fabricated. From the test results, the designed safety joint was proved to have a variable load-carrying capacity and about 42% impact absorption capacity with simple manipulation of the control screw.