• Title/Summary/Keyword: shoal

Search Result 68, Processing Time 0.023 seconds

Study on the Acoustic Behaviour Pattern of Fish Shool and Species Identification 1. Shoal Behaviour pattern of anchovy (Engraulis japonicus) in Korean waters and Species Identification Test. (어군의 음향학적 형태 및 분포특성과 어종식별에 관한 연구 1.한국 연근해 멸치어군의 형태 및 분포특성과 종식별 실험)

  • 김장근
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.1
    • /
    • pp.52-61
    • /
    • 1998
  • We studied behaviour pattern of anchovy (Engraulis japonicus) shoal by a method of shoal echo integration and tested species identification by a method of artificial neural network using the acoustic data collected in the East China Sea in March 1994 and in the southern coastal waters of the East Sea of Korea in March 1995. Between areas, frequency distribution of 10 shoal descriptors was different, which showed characteristics of shoal behaviour in size, bathymetric position and acoustic strength. The range and mean of shoal size distribution in length and height was wider and bigger in the southern coastal waters of the East Sea than in the East China Sea. Relative shoal size of China Sea. Fractal dimension of shoal was almost same in both areas. Mean volume reverbration index of shoal was 3 dB higher in the southern coastal waters of the East Sea than in the East China Sea. The depth layer of shoal distribution was related to bottom depth in the southern coastal waters of the East Sea, while it was between near surface and central layer in the East China Sea. Principal component analysis of shoal descriptors showed the correlation between shoal size and acoustic strength which was higher in the southern coastal waters of the East Sea, than in the East China Sea. Correlation was also found among the bathymetric positions of shoal to some degree higher in the southern coastal waters of the East Sea than in the East China Sea. The anchovy shoal of two areas was identified by artificial neural network. The contribution factor index (Cio) of the shoal descriptors between two areas were almost identical feature. The shoal volume reverberation index (Rv) was showed the highest contribution to the species identification, while shoal length and shoal height showed relatively high negative contribution to the species identification.

  • PDF

Experiments for Wave Transformation of Regular and Irregular Waves over a Submerged Elliptic Shoal(I) : Non-breaking Conditions (타원형 수중천퇴상의 규칙파 및 불규칙파의 전파변형 실험(I):비쇄파조건)

  • 이종인;이정욱
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.3
    • /
    • pp.240-246
    • /
    • 2002
  • Hydraulic model experiments were conducted fur a series of regular and uni-directional irregular waves propagating over a submerged elliptic shoal. Two different sets of experiments have been studied; one considers regular wave transformation with no breaking, and the other considers uni-directional irregular wave with partial breaking on top of the shoal. The numerical experiments are also performed using a numerical model based on the parabolic approximation equation. The result of the numerical experiments are compared with that of hydraulic experiments.

Calculation of Wave Deformation and Wave Induced Current around an Underwater Shoal by Boussinesq Equation (Boussinesq 방정식을 이용한 수중 천퇴에서의 파랑변형 및 파랑류 계산)

  • Chun Insik;Seong Sangbong;Kim Guidong;Sim Jaeseol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.3
    • /
    • pp.202-212
    • /
    • 2005
  • In the design of an of offshore structure located near an underwater shoal, the same amount of attention given to the wave height may have to be put to the wave induced current as well since some of the wave energy translates to the current. In the present study, two numerical models each based on the nonlinear Boussinesq equation and the linear mild slope equation are applied to calculate the wave deformation and secondly induced current around a shoal. The underwater shoal in Vincent and briggs' experiment (1989) is used here, and all non-breaking wave conditions of the experiment with various monochromatic and unidirectional or multidirectional spectral wave incidences are concerned. Both numerical models clearly showed wave induced currents symmetrically farmed along the centerline over the shoal. The calculated wave heights along a preset line also generally showed very nice agreements with the experimental values.

Hydroacoustic Investigations on the Distribution Characteristics of the Anchovy at the South Region of East Sea (음향에 의한 동해안 남부해역 멸치어군의 분포특성조사 연구)

  • 강명희
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.1
    • /
    • pp.16-23
    • /
    • 1996
  • Spatial distribution characteristics, volume backscattering strength and species composition of midwater trawling catch was analyzed biological and acoustical characteristics of anchovy shoal, using a high resolution echo - sounder at the south region of East sea of Korea. 1) In the survey site A of Lat.35$^{\circ}$55'N, Long.129$^{\circ}$45'E, the anchovy shoal of small to middle size with the horizontal range of 10~25m and large size with the horizontal range of 40~50m were distributed together. However in the survey site B of Lat.35$^{\circ}$38'N, Long.129$^{\circ}$40'E, the anchovy shoal was observed to be mainly small size which about 78% of the detected shoal. Another was that the anchovy shoal with the vertical range of 2~8m occupied about 68.6% in the survey site A and that of 6~12m occupied about 42.5% in the survey site B. The mainly the site A and B were found to be 10~50m super (2), 64.5% and 20~80m super (2), 66%, respectively. 2) The volume backscattering strength in the site A and B were observed to be -44.0~ -28.0dB, respectively. In the site A, the backscattering strength of -40.0~ -30.0dB was analyzed about 41.4%. 3) Most of total anchovy shoal was concentrated in the water layer of 50~100m in depth with 15.3~18.5$^{\circ}C$, 34.0~34.3$\textperthousand$ in the survey site A and 14.2~16.4$^{\circ}C$, 34.1~34.2$\textperthousand$ in the survey site B. 4) Mean total length(TL) and body weight(BW) of anchovy in the survey site A were 9.9cm and 4.4g respectively, with TL-BW relationship of BW=0.0007T$L^3.65$super (3.85). In site B, mean total length(TL) and body weight(BW) were 11.2cm and 8.7g, with TL-BW relationship of BW=0.0023T$L^3.36$.

  • PDF

Numerical Simulation of Irregular Wave Transformation due to Wave-induced Current over a Submerged Elliptic Shoal (수중타원형 천퇴상 불규칙파의 파랑쇄파류에 의한 변형 수치모의)

  • Choi, Jun-Woo;Baek, Un-Il;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.565-573
    • /
    • 2007
  • The effect of wave and current interactions on irregular wave transformation over a submerged elliptic shoal is investigated based on numerical simulations of the Vincent and Briggs experiment [Vincent, C.L., Briggs, M.J., 1989. Refraction-diffraction of irregular waves over a mound. Journal of Waterway, Port, Coastal and Ocean Engineering, 115(2), pp. 269-284]. The numerical simulations are conducted by a combination of REF/DIF S(a wave model) and SHORECIRC(a current model) and a time dependent phase-resolving wavecurrent model, FUNWAVE. In the simulations, the breaking-induced currents defocus waves behind the shoal and bring on a wave shadow zone that shows relatively low wave height distributions. The computed results of the combined model system agree better with the measurements than the computed results obtained by neglecting wave-current interaction do. In addition, the results of FUNWAVE show a good agreement with the measurements. The agreement indicates that it is necessary to take into account the effect of breaking-induced current on wave refraction when wave-breaking occurs over a submerged shoal.

Role of Sand Shoal in the Intertidal Flat Sedimentation, Gomso Bay, Southwestern Korea (서해 곰소만 조간대 퇴적작용에서 모래톱의 역할)

  • Lee, In-Tae;Chun, Seung Soo
    • Journal of the Korean earth science society
    • /
    • v.22 no.2
    • /
    • pp.120-129
    • /
    • 2001
  • A sand shoal (1300 m long and 400 m wide) with an orientation of north-south is formed on the lower tidal flat of Gomso Bay, southwestern coast of Korea. Surface bedforms, sedimentary structures, sedimentation rate, grain size distribution and can-corer sediments have been measured and analysed along the sand shoal proper zone B and its offshore zone A and onshore zone C during the period of 14 months. These three zones can be differentiated based on sedimentological characteristics: A zone - fine sand (3${\varphi}$ mean), linguoid-type ripples, 70 mm/month in sedimentation rate and no bioturbation, B zone - medium sand (2.5${\varphi}$ mean), dunes (4${\sim}$5 m in wavelength), 30 mm/month in sedimentation rate and no bioturbation, and C zone - coarse silt (5${\varphi}$ mean), sinuous-type ripples, 10 mm/month in sedimentation rate and well-developed bioturbation. These characteristics indicate that the zone C represents a relatively low-energy regime environment whereas the zone A corresponds to a relatively high-energy environment. The zone B would play an important role for a barrier to dissipate the approaching wave energy, resulting in maintaining of low-energy conditions in the inner part of Gomso-Bay intertidal flat behind.

  • PDF

Evaluation of Fluid Forces Acting on Offshore Structures Placed in the Vicinity of Underwater Shoal (수중 천퇴 인근에 설치된 해양구조물에 작용하는 유체력 결정에 대한 고찰)

  • Chun, In-Sik;Min, In-Ki;Sim, Jae-Seol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.2
    • /
    • pp.136-145
    • /
    • 2007
  • When waves propagating over an underwater shoal break at the top of the shoal, wave heights are drastically decreased in the downstream breaking zone, but a secondary current shooting downstream with strong velocity can be induced by the breaking waves themselves. In the case that an offshore structure is placed in the breaking zone, the estimation of wave farce purely based on the visible wave height may cause an under-design of the structure. Thus, for the safe design of the structure, the breaking wave induced current should be necessarily considered in the comprehensive estimation of design load. In the present study, Boussinesq equation model to calculate the wave height distribution and breaking wave induced current was set up and applied to the scheme of a hydraulic model test previously undertaken. Based on the results of the Boussinesq model, fluid forces acting on the model structure were calculated and compared with the experimental results. The importance of the breaking wave induced current was quantitatively assessed by comparing fluid forces with or without current.

Monitoring of Moisture Content and Sediment Fineness as Predictors of Shoal Breaching in an Estuary

  • Lee, Seulki;Park, Sungjae;Lee, Chang-Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.1
    • /
    • pp.25-32
    • /
    • 2018
  • Namdae-cheon in Gangwon-do Province, Korea, is a valuable well-preserved lagoon. The estuary of Namdae-cheon Stream is closed because of the surrounding natural sand shoal. Thus, during the dry season, river water cannot easily flow to the ocean and therefore stagnates. River water congestion causes environmental deterioration of estuaries, often by eutrophication. In this study, we examined wall disintegration in the estuary area and used it to determine appropriate measures for the conservation of estuary water quality in the future. A total of 24 sites were selected, with 13 sites on the west side and 11 sites on the east side of the estuary study area. Samples were collected and analyzed for particle size and moisture content both vertically and horizontally. Sedimentary deposition rate was measured, and subsidence analysis was performed. Particle size, water content, sedimentary deposition, and subsidence analyses indicated that flow shifted to the west during the study period. In conjunction with other variables that may affect changes in flow, these parameters can be used in future research to predict shoal breaches and associated changes in water flow direction.

Comparison of PCGM and Parabolic Approximation Numerical Models for an Elliptic Shoal (타원형천퇴에 대한 PCGM과 포물형근사식 수치모형비교)

  • 서승남;연영진
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.3
    • /
    • pp.216-225
    • /
    • 1994
  • By use of laboratory experiment data set for an elliptic shoal by Berkhoff et al. (1982), both accuracy and Performance tests of numerical results between PCGM (Preconditioned Conjugate Gradient Method) and PA(Parabolic Approximation) are compared. Although both results show good agreement with the experimental data the PA model gives better reproduction of the relatively high amplitudes in the section 4-5 downwave of the shoal, in comparison with the PCGM. The PA model has been proved to be a useful tool for predicting wave transformationsin large shallow water region, but it can be applied only to the case of negligible reflection. On the other hand, there is a need to improve the computational efficiency of the PCGM model which is a finite difference scheme directly derived from the mild slope equation and can handle reflection. By taking the results of th PA model as an input data of the PCGM, the CPU time can be reduced by about 40%.

  • PDF

Numerical Simulation of Regular Wave Transformation due to Wave-induced Current over a Submerged Elliptic Shoal (수중타원형 천퇴를 통과하는 규칙파의 파랑쇄파류에 의한 변형)

  • Choi, Jun-Woo;Baek, Un-Il;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.557-564
    • /
    • 2007
  • The effect of wave and current interactions on regular wave transformation over a submerged elliptic shoal is investigated based on numerical simulations of the Vincent and Briggs experiment [Vincent, C.L., Briggs, M.J., 1989. Refraction-diffraction of irregular waves over a mound. Journal of Waterway, Port, Coastal and Ocean Engineering, 115(2), pp. 269-284]. The numerical simulations are conducted by constituting two numerical model systems: a combination of SWAN(a wave model) plus SHORECIRC(a current model) and a combination of REF/DIF 1(a wave model) plus SHORECIRC. A time dependent phase-resolving wave-current model, FUNWAVE, is also utilized to simulate the experiment. In the simulations, the breaking-induced currents defocus waves behind the shoal and bring on a wave shadow zone that shows relatively low wave height distributions. The computed results of the two model systems agree better with the measurements than the computed results obtained by neglecting wave-current interaction do. However, it is found that the radiation stresses for standing waves are misevaluated in the wave models. In addition, the results of FUNWAVE show very good agreement with the measurements. The agreement indicates that it is necessary to take into account the effect of breaking-induced current on wave refraction when wave-breaking occurs over a submerged shoal.