• Title/Summary/Keyword: ship collision

Search Result 498, Processing Time 0.03 seconds

A Study on the Extents of Damage of a Bow Structure According to Collision Scenario (선수 충돌 상황별 손상거동에 관한 연구)

  • Kim, Kui-Me;Kim, Geun-Won;Shin, Ki-Su
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.266-271
    • /
    • 2012
  • The rescue methods for the marine casualties are limited due to the characteristics of operation environment of the vessel. Especially the most of marine accidents have been occurred at the bow structure of ship. Moreover the failure of bow structure may lead to catastrophic mishaps. In this paper, the extents of damage of a bow structure fracture subject to collision accident was investigated by using numerical method. The computer simulation approach by using Finite Element Method was employed to accomplish this goal. A finite element model, a 3D model of ship, has been utilized to evaluate damage of bow structure according to collision scenario. In conclusion, we have demonstrated that the plastic deformation occurred at the bow structure. Also it was shown that the collision angle clearly plays a role in determining amount of damage of ship structures.

Classification of Human Errors in Ship′s Collision using GEMS Model (GEMS모델을 이용한 선박충돌사고의 인적과실 유형 분석)

  • Yang, Won-Jae;Ko, Jae-Yong;Keum, Jong-Soo
    • Journal of Navigation and Port Research
    • /
    • v.28 no.3
    • /
    • pp.161-167
    • /
    • 2004
  • Maritime safety and marine environmental protection are the most important topic in marine society. But, so many marine accidents have been occurred with the development of marine transportation industry. On the other side, ship is being operated under a highly dynamic environment and many factors are related with ship's collision Nowadays, the increasing tendency to the human errors of ship's collision is remarkable, and the investigation of the human errors has been heavily concentrated. This study analysed on the human errors of ship's collision related to the negligence of lookout and classified basic error type using GEMS(Generic Error Modeling System) dynamic model.

Ship Collision Risk of Suspension Bridge and Design Vessel Load (현수교의 선박충돌 위험 및 설계박하중)

  • Lee, Seong Lo;Bae, Yong Gwi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.11-19
    • /
    • 2006
  • In this study ship collision risk analysis is performed to determine the design vessel for collision impact analysis of suspension bridge. Method II in AASHTO LRFD bridge design specifications which is a more complicated probability based analysis procedure is used to select the design vessel for collision impact. From the assessment of ship collision risk for each bridge pier exposed to ship collision, the design impact lateral strength of bridge pier is determined. The analysis procedure is an iterative process in which a trial impact resistance is selected for a bridge component and a computed annual frequency of collapse(AF) is compared to the acceptance criterion, and revisions to the analysis variables are made as necessary to achieve compliance. The acceptance criterion is allocated to each pier using allocation weights based on the previous predictions. This AF allocation method is compared to the pylon concentration allocation method to obtain safety and economy in results. This method seems to be more reasonable than the pylon concentration allocation method because AF allocation by weights takes the design parameter characteristics quantitatively into consideration although the pylon concentration allocation method brings more economical results when the overestimated design collision strength of piers compared to the strength of pylon is moderately modified. The design vessel for each pier corresponding with the design impact lateral strength obtained from the ship collision risk assessment is then selected. The design impact lateral strength can vary greatly among the components of the same bridge, depending upon the waterway geometry, available water depth, bridge geometry, and vessel traffic characteristics. Therefore more researches on the allocation model of AF and the selection of design vessel are required.

A study on the collision between fishing vessel and non fishing vessel using the analysis of written verdict (재결서 분석을 통한 어선-비어선간 충돌사고에 관한 연구)

  • Lee, Yoo-Won;Kim, Seok-Jae;Park, Moon-Kap
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.2
    • /
    • pp.136-143
    • /
    • 2013
  • The analysis of the written verdicts in recent five years was conducted to obtain preventive measures of collision between fishing vessel and non fishing vessel. As a result, a collision much happened in offshore trap for fishing vessel and below 5,000 tons of small and medium class for non fishing vessel. A person involved in a marine accident occupied 68% in sixth class deck officer and small boat operator for fishing vessel and 29% in third class deck officer for non fishing vessel. 90% of the collision happened in a underway by operating state and 84% in sight of one another by visibility state. The systemic radar training was required since 47% of the collisions was occurred on the condition of radar operation in fishing vessel. The main cause of poor lookout was a intensive fishing and poor lookout on movement by radar for fishing vessel and one man watch system and no recognition of one another by radar for non fishing vessel. This result is expected to contribute for the decrease of collision.

Study on the Human Error Prevention Collision Avoidance Model using Merchant Ship Collision Accident Analysis (상선 충돌사고 분석을 이용한 인적과실 예방 충돌회피모델 연구)

  • Kim, Do-Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.918-927
    • /
    • 2022
  • The purpose of this study was to investigate the causes of collisions by examining 668 cases of merchant ship collision accidents that occurred during the past 12 years (2010-2021) and analyzed them statistically. Further, the analysis results were applied to propose a human error prevention collision avoidance (HEPCA) model. The statistical annual report of the Korea Maritime Safety Tribunal (KMST) and the collision investigation report were investigated to collect data on the causes of collisions of merchant ships, and frequency analysis was performed using the statistical analysis tool, SPSS Statistics. In the first-stage analysis, the causes of collisions were analyzed targeting 668 merchant ship collision accidents, and in the second-stage analysis, the identified maximum frequency cause factors were analyzed in detail. The analysis results identified that 98 % of the cause of the collision was the human error of the navigator, and the highest frequency was in the order of neglect of look-out > violation of navigation regulations > improper maneuvering. The cause of the neglect of look-out was mainly neglecting continuous monitoring after the first recognition of the target ship. The HEPCA model for human error prevention was proposed by applying the analysis results to the collision case of the investigation report. The results of this study are expected to be used as educational materials at marine navigator educational institutions and in practice for avoiding collisions caused by human errors of navigators.

Event-Triggered NMPC-Based Ship Collision Avoidance Algorithm Considering COLREGs (국제해상충돌예방규칙을 고려한 Event Triggered NMPC 기반의 선박 충돌 회피 알고리즘)

  • Yeongu Bae;Jaeha Choi;Jeonghong Park;Miniu Kang;Hyejin Kim;Wonkeun Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.3
    • /
    • pp.155-164
    • /
    • 2023
  • About 75% of vessel collision accidents are caused by human error, which causes enormous economic loss, environmental pollution, and human casualties, thus research on automatic collision avoidance of vessels is being actively conducted. In addition, vessels must comply with the COLREGs rules stipulated by IMO when performing collision avoidance with other vessels in motion. In this study, the collision risk was calculated by estimating the position and velocity of other vessels through the Probabilistic Data Association Filter (PDAF) algorithm based on RADAR sensor data. When a collision risk is detected, we propose an event-triggered Nonlinear Model Predict Control (NMPC) algorithm that geometrically creates waypoints that satisfy COLREGs and follows them. To verify the proposed algorithm, simulations through MATLAB are performed.

A Novel Collision Avoidance System to Prevent Navigator's Human Error - Development Concepts - (해기사 인적오류 예방이 가능한 새포운 선박충돌회피 시스템 개발 개념)

  • Yim, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.264-264
    • /
    • 2019
  • The purpose of this paper is to establish development concepts for a novel collision avoidance system with preventing function of navigator's human error (Hu-CAS) in ship control behaviors. Hu-CAS consists of four modules: 1) collision risk assessment module to estimate collision priority between the ship and objects, 2) decision-making module to decide collision risk levels, 3) parameter estimation module needed in the ship control to avoid collisions and 4) control system to control the rudder angle and speed. Hu-CAS, proposed in this paper, can provide a novel system substitution current Autopilot and/or a CAS be teen manned vessel and Autonomous ship in a future.

  • PDF

Simulating Avoidance Actions and Evaluating Navigational Rules in An Expert System of Collision Avoidance

  • Jeong, Tae-Gwoen;Chao, Chen
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.79-80
    • /
    • 2007
  • An expert system of collision avoidance developed by CLIPS and Visual C++ is continuously introduced in this paper. Further, a simulation function of collision avoidance is added to the expert system, the function can simulate the avoidance actions of own ship and a specific target of a period of future time. This function can help navigators to estimate collision risk and make proper collision avoidance actions in dangerous situations for navigational safety of ships. Furthermore, navigational rules can also be evaluated during the process of simulation.

  • PDF

A study of the development of Ship's Collision Risk Algorithm by Relative bearing in Closest Position of Approach(CPA) (최근접점 상대방위에 따른 선박충돌위험알고리즘 개발에 관한 연구)

  • Lee, Jin-Suk;Song, Chae-Uk;Jung, Min
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.47-48
    • /
    • 2015
  • VTSO make a decision which one will be danger and what to expect ship's actions due to each encountering situation with CPA(Closest Point of Approach) and TCPA(Time to Closest Point of Approach) by monitoring ship's vectors(Course & Speeds) in real-time through the VTS system. This study is the fundamental research for developing algorithm and system that does not decide the collision risk in one's own ship's viewpoints, but it identifies the related ships into danger through the third party(VTS ) in real time.

  • PDF