• Title/Summary/Keyword: ship's collision

Search Result 232, Processing Time 0.027 seconds

A method of inferring collision ratio based on maneuverability of own ship under critical collision conditions

  • You, Youngjun;Rhee, Key-Pyo;Ahn, Kyoungsoo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.2
    • /
    • pp.188-198
    • /
    • 2013
  • In constructing a collision avoidance system, it is important to determine the time for starting collision avoidance maneuver. Many researchers have attempted to formulate various indices by applying a range of techniques. Among these indices, collision risk obtained by combining Distance to the Closest Point of Approach (DCPA) and Time to the Closest Point of Approach (TCPA) information with fuzzy theory is mostly used. However, the collision risk has a limit, in that membership functions of DCPA and TCPA are empirically determined. In addition, the collision risk is not able to consider several critical collision conditions where the target ship fails to take appropriate actions. It is therefore necessary to design a new concept based on logical approaches. In this paper, a collision ratio is proposed, which is the expected ratio of unavoidable paths to total paths under suitably characterized operation conditions. Total paths are determined by considering categories such as action space and methodology of avoidance. The International Regulations for Preventing Collisions at Sea (1972) and collision avoidance rules (2001) are considered to solve the slower ship's dilemma. Different methods which are based on a constant speed model and simulated speed model are used to calculate the relative positions between own ship and target ship. In the simulated speed model, fuzzy control is applied to determination of command rudder angle. At various encounter situations, the time histories of the collision ratio based on the simulated speed model are compared with those based on the constant speed model.

System Dynamics Analysis for Human Factors of Ship's Collision (SD법에 의한 선박충돌사고의 인적요인 분석)

  • Jang Woon Jae;Keum Jong Soo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.11a
    • /
    • pp.7-11
    • /
    • 2003
  • Ship is being operated under a highly dynamic environments and many factors are related with ship's collision and those factors are interacting. So, an analysis on the ship's collision causes is very important to prepare countermeasures which will ensure the safe navigation. And the analysis confirmed that ship's collision is occurred most frequently and the cause is closely related with human factor. The main purpose of this study is to build a model of human factors in ship's collision cause using SD(System Dynamics} approach and to measure a effect which is risk control countermeasures of ship's collision. To achieve this aim, the structure analysis on the causes of ship's collision using FSM are performed, and the structure was changed by quantitative, qualitative factors and their feedback loops in casual map. This model was performed over 20 years(1993-2012) in a standard simulation model and 8 policy simulation models.

  • PDF

A Study on the System Dynamics Analysis for Human Factors in Ship′s Collision Accidents (시스템 다이내믹스에 의한 선박충돌사고의 인적요인 분석에 관한 연구)

  • Keum, Jong-Soo;Yang, Weon-Jae;Jang, Woon-Jae
    • Journal of Navigation and Port Research
    • /
    • v.27 no.5
    • /
    • pp.493-498
    • /
    • 2003
  • Ship is being operated under a highly dynamic environments and many factors are related with ship's collision and those factors are interacting. So, An analysis on the ship's collision muses is very important to prepare countermeasures which will ensure the safe navigation. And the analysis confirmed that ship's collision is occurred most frequently and the muse is closely related with human factor. The main purpose of this study is to build a model of human factors in ship's collision muse using SD(System Dynamics} approach and to measure a effect which is risk control countermeasures of ship's collision. To achieve this aim, the structure analysis on the muses of ship's collision using FSM are performed, and the structure was changed by quantitative, qualitative factors and their feedback loops in casual map. This model was performed over 20 years(1993-2012) in a standard simulation model and 8 policy simulation models.

Ship collision in Chinese Maritime Law: Legislation and Judicial Practice

  • Qi, Jiancuo
    • Journal of Navigation and Port Research
    • /
    • v.46 no.2
    • /
    • pp.99-109
    • /
    • 2022
  • A report released by the Chinese Maritime Court found that the natural environment and other objective factors have greatly reduced the risk of ship collision accidents with the advancement of technologies. However, collisions between merchant ships and fishing boats occur frequently along the coast during fishing seasons, which should be highly valued. International conventions and domestic legislation in China comprise detailed laws with respect to ship collisions, but the theory of ship collision infringement needs to be improved, enriched, and developed. Meanwhile, the development of the tort liability law provides theoretical support for ship collision infringement. As far as China's ship tort legal system is concerned, the research on ship collision tort damage compensation is relatively extensive, and the constitutive elements and causality of ship collision tort liability have also been studied in depth. The purpose of this paper is to explore the domestic legislation applicable to disputes related to ship collisions in China. As these laws are unclear on the resolution of disputes resulting from ship collisions, significant attention has been focused on the final judgments by the Supreme Court of China (SPC), as well as the judicial judgments set by the Maritime Court of China.

A Study on Mariners' Standard Behavior for Collision Avoidance (1) - A concept on modeling for collision avoidance based on human factors -

  • Park, Jung-Sun;Kobayashi, Hiroaki;Yea, Byeong-Deok
    • Journal of Navigation and Port Research
    • /
    • v.31 no.4
    • /
    • pp.281-287
    • /
    • 2007
  • Human factors have been considered the primary reason of marine accidents. Especially, the collision between vessels is mostly mused by human behavior. However, there have not been many researches to clarify the reason of marine accidents mused by human factors quantitatively. In order to understand human factors and to enhance safe navigation systematically, using a full mission ship-handling simulator, we've investigated the characteristics of avoiding behavior taken by mariners. Further in order to apply the characteristics more widely and effectively, it's necessary to formulate the standard behavior for ship-handling in the condition of collision avoidance. Is this study, therefore, we intended to propose the concept to model the mariner's standard behavior on the handling of collision avoidance as the first step. As a result, we confirmed the contents of information processing in ship-handling that mariner's generally taking to avoid collision.

Ship Collision Avoidance System Considering Ship' Maneuverability

  • Lee, Seung-Keon;Surendran, S.;Im, Nam-Kyun;Hwang, Sung-Jun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.95-100
    • /
    • 2006
  • A ship collision avoidance system is developed to control the avoidance action of ship actually and properly in wind forces. The 4-DOF maneuvering equations of motion ar derived to catty out the simulation of the motion of a ship, and the wind forces are considered as the external forces in the simulation. This study suggests a new avoidance system that could include the ship's maneuvering characteristics.

  • PDF

A Study on the Application of Variable Safe-Guard Ring for the Ship Collision Avoidance in Shallow Water (천수역에서 충돌회피를 위한 가변안전경계영역 적용에 관한 연구)

  • Yang, Hyoung-Seon;Ahn, Young-Sup
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.2
    • /
    • pp.157-162
    • /
    • 2008
  • The ship's maneuverability is the important factor to avoid ship's collisions. The ship's maneuverability is usually measured in a deep water, and the turning ability is decreased and the course stability is improved in a shallow water. The variation of the turning ability could cause the risk of collision. In this paper, we proposes application technique of Variable Safe-Guard Ring to consider the shallow water effect and to be simple to estimate the grade of collision risk simultaneously. Through the mathematical simulation, the availability of new method was varified. Therefore this method is expected enough to support a maneuver for collision avoidance.

  • PDF

Quantitative Evaluation of the Collision-Avoidance Capability of Maritime Autonomous Surface Ships Using FMSS (FMSS를 이용한 자율운항선박 충돌회피능력 정량화 평가 기법에 관한 연구)

  • Bae, Seok-Han;Jung, Min;Jang, Eun-Kyu
    • Journal of Navigation and Port Research
    • /
    • v.44 no.6
    • /
    • pp.460-468
    • /
    • 2020
  • Research related to the technology developed for the Maritime Autonomous Surface Ship (MASS) is currently underway. Although one of those core technologies is collision-avoidance technology for ship operators at sea, no research has been done to objectively quantify its effectiveness. Therefore, this study was conducted to develop an evaluation model to examine the collision-avoidance ability of MASS. Ship-control experts performed a ship-handling simulation for each ship encounter type using the Full Mission Ship-handling Simulator (FMSS). We used the resulting data and technical statistics, to develop an evaluation model that utilized FMSS to quantify the operational capability of the collision-avoidance technology. This evaluation model also can be used at sea to assess deck officers' ability to use the technology and to improve and develop other MASS technologies.

A Study on Intention Exchange-based Ship Collision Avoidance by Changing the Safety Domain

  • Kim, Donggyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.259-268
    • /
    • 2019
  • Even if only two ships are encountered, a collision may occur due to the mistaken judgment of the positional relationship. In other words, if an officer does not know a target ship's intention, there is always a risk of collision. In this paper, the experiments are conducted to investigate how the intention affects the action of collision avoidance in cooperative and non-cooperative situations. In non-cooperative situation, each ship chooses a course that minimizes costs based on the current situation. That is, it always performs a selfish selection. In a cooperative situation, the information is exchanged with a target ship and a course is selected based on this information. Each ship uses the Distributed Stochastic Search Algorithm so that a next-intended course can be selected by a certain probability and determines the course. In the experimental method, four virtual ships are set up to analyze the action of collision avoidance. Then, using the actual AIS data of eight ships in the strait of Dover, I compared and analyzed the action of collision avoidance in cooperative and non-cooperative situations. As a result of the experiment, the ships showed smooth trajectories in the cooperative situation, but the ship in the non-cooperative situation made frequent big changes to avoid a collision. In the case of the experiment using four ships, there was no collision in the cooperative situation regardless of the size of the safety domain, but a collision occurred between the ships when the size of the safety domain increased in cases of non-cooperation. In the case of experiments using eight ships, it was found that there are optimal parameters for collision avoidance. Also, it was possible to grasp the variation of the sailing distance and the costs according to the combination of the parameters, and it was confirmed that the setting of the parameters can have a great influence on collision avoidance among ships.

The Effect of Repeated Mariner Training Using a Ship-Handling Simulator System on Ship Control (선박조종시뮬레이터를 이용한 반복 항해 훈련이 선박 조종에 미치는 영향)

  • Lee Jae-Sik;Lee Joon-Bum;Oh Jin-Seok
    • Journal of Navigation and Port Research
    • /
    • v.30 no.6 s.112
    • /
    • pp.427-432
    • /
    • 2006
  • The purpose of the present study was to investigate the effect of mariner's situation awareness(SA) training on navigation performance using a full mission ship-handling simulator. For this purpose, the mariners were trained in terms of various aspects of SA. Independent variables such as risk levels of ship-to-ship collision, navigational route types of 'target ship(TS)', and number of ships around the own ship(OS) were systematically varied, and dependent variables of closest point of approach(CPA) between TS and OS, number of collision, types of collision-avoidance strategy were measured The results can be summarized as followings. First, training on mariner's SA appeared to induce improved performances in various aspects of ship handling. Second, mariners in the routine navigation situation where TS had priority following maritime rules seemed to suffer to prepare collision avoidance when the TS altered its route. However, this tendency greatly reduced after the training These results suggest the benefit of mariner's SA training on maritime safety.